期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于量子万有引力搜索的SVM自驾故障诊断
被引量:
9
1
作者
李海涛
何玉珠
宋平
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016年第6期1093-1098,共6页
针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对...
针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对参数寻优的收敛速度和收敛精度,将基于GSA的QGSA应用于SVM的参数寻优中,以解决SVM由于参数选取不当导致过学习或欠学习的问题,从而获得最优的分类模型。通过模拟实验分析,当训练样本数量为50时,基于QGSA的SVM故障诊断模型分类准确率便能达到96.530 6%,而基于遗传算法(GA)的SVM故障诊断模型分类准确率为92.040 8%,基于GSA的SVM故障诊断模型分类准确率为91.6327%。仿真实验结果表明,基于QGSA的SVM故障诊断模型具有更好的故障诊断能力。
展开更多
关键词
自动驾驶仪
量子
万有引力
搜索算法
(
qgsa
)
支持向量机(SVM)
故障诊断
参数寻优
下载PDF
职称材料
题名
基于量子万有引力搜索的SVM自驾故障诊断
被引量:
9
1
作者
李海涛
何玉珠
宋平
机构
北京航空航天大学仪器科学与光电工程学院
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016年第6期1093-1098,共6页
文摘
针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对参数寻优的收敛速度和收敛精度,将基于GSA的QGSA应用于SVM的参数寻优中,以解决SVM由于参数选取不当导致过学习或欠学习的问题,从而获得最优的分类模型。通过模拟实验分析,当训练样本数量为50时,基于QGSA的SVM故障诊断模型分类准确率便能达到96.530 6%,而基于遗传算法(GA)的SVM故障诊断模型分类准确率为92.040 8%,基于GSA的SVM故障诊断模型分类准确率为91.6327%。仿真实验结果表明,基于QGSA的SVM故障诊断模型具有更好的故障诊断能力。
关键词
自动驾驶仪
量子
万有引力
搜索算法
(
qgsa
)
支持向量机(SVM)
故障诊断
参数寻优
Keywords
autopilot
quantum inspired gravitational search algorithm(
qgsa
)
support vector machine(SVM)
fault diagnosis
parameters optimizing
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于量子万有引力搜索的SVM自驾故障诊断
李海涛
何玉珠
宋平
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部