Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacem...Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems.展开更多
[ 篇名 ] Fabrication of Textured Ag Substrate for YBCO Coated Conductor,[ 篇名 ] Quenching of photodarkening in metal-doped chalcogenide amorphous films,[篇名 ] Quenching of singlet molecular oxygen (-△{sub}g) by v...[ 篇名 ] Fabrication of Textured Ag Substrate for YBCO Coated Conductor,[ 篇名 ] Quenching of photodarkening in metal-doped chalcogenide amorphous films,[篇名 ] Quenching of singlet molecular oxygen (-△{sub}g) by vitamins and polyphenols studies by time-resolved ESR,[篇名] Vacuum-Heat-Treatment of hot-work steel,[ 篇名] Quantum confined stark effect in GaInNAs/GaAs mnultiple quantum wells。展开更多
The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the self...The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.展开更多
The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. Wit...The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. With characteristic parameters pertaining toGaAs/Ga_(1-x)Al_xAs parabolic quantum wells, the numerical results are presented. It is shown that,the smaller the well width, the larger the peak intensity of the optical conductivity, and the moreasymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to theelectric field, the electric Geld enhances the optical conductivity; when the dimension of thequantum well increases, the optical conductivity increases until it reaches a maximum value, andthen decreases.展开更多
We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound stat...We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound states of thequantum well is expressed in terms of the transfer matrix elements.It is found that the electronic transmission exhibitsresonant tunneling peaks at the eigenlevels of the bound states and shifts to the higher energy with increasing the incidentangle.If there are N coupled quantum wells,the resonant modes have N-fold splitting.The peaks of resonant tunnelingcan be controlled by modulating the graphene barriers.展开更多
The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ...The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ground state of the double-well potential. The result iscompared to the one based on the original iterative method. The limitation of the asymptoticexpansion is also discussed.展开更多
Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. ...Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. Numerical results show that the donor binding energy depends on the impurity position, laser parameter, temperature, Al composition, and well width. The donor binding energy is decreased when the laser field and temperature are increased in the QW for any impurity position and QW parameter case. Moreover, the laser field has an obvious influence on the donor binding energy of impurity located at the vicinity of the QW center. In addition, our results also show that the donor binding energy decreases (or increases) as the well width (or AI composition x) increases in the QW.展开更多
In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and...In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.展开更多
文摘Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems.
文摘[ 篇名 ] Fabrication of Textured Ag Substrate for YBCO Coated Conductor,[ 篇名 ] Quenching of photodarkening in metal-doped chalcogenide amorphous films,[篇名 ] Quenching of singlet molecular oxygen (-△{sub}g) by vitamins and polyphenols studies by time-resolved ESR,[篇名] Vacuum-Heat-Treatment of hot-work steel,[ 篇名] Quantum confined stark effect in GaInNAs/GaAs mnultiple quantum wells。
基金the National Fund for Distinguished Young Scholars of China,国家重点基础研究发展计划(973计划),上海市科委资助项目
文摘The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.
文摘The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. With characteristic parameters pertaining toGaAs/Ga_(1-x)Al_xAs parabolic quantum wells, the numerical results are presented. It is shown that,the smaller the well width, the larger the peak intensity of the optical conductivity, and the moreasymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to theelectric field, the electric Geld enhances the optical conductivity; when the dimension of thequantum well increases, the optical conductivity increases until it reaches a maximum value, andthen decreases.
基金Supported by the National Natural Science Foundation of China under Grant No. 10832005the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0730+1 种基金Program for International S & T Cooperation Program of China under Grant No. 2009DFA02320Doctoral Research Foundation of Nanchang University under Grant No. 300715
文摘We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound states of thequantum well is expressed in terms of the transfer matrix elements.It is found that the electronic transmission exhibitsresonant tunneling peaks at the eigenlevels of the bound states and shifts to the higher energy with increasing the incidentangle.If there are N coupled quantum wells,the resonant modes have N-fold splitting.The peaks of resonant tunnelingcan be controlled by modulating the graphene barriers.
文摘The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ground state of the double-well potential. The result iscompared to the one based on the original iterative method. The limitation of the asymptoticexpansion is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No. 60906044
文摘Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. Numerical results show that the donor binding energy depends on the impurity position, laser parameter, temperature, Al composition, and well width. The donor binding energy is decreased when the laser field and temperature are increased in the QW for any impurity position and QW parameter case. Moreover, the laser field has an obvious influence on the donor binding energy of impurity located at the vicinity of the QW center. In addition, our results also show that the donor binding energy decreases (or increases) as the well width (or AI composition x) increases in the QW.
基金supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.11174370,11304387 and 61205108)the Research Plan Project of National University of Defense Technology(Grant No.ZK16-03-04)
文摘In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.