Quantum Fisher information is used to witness the quantum phase transition in a non-Hermitian trapped ion system with balanced gain and loss,from the viewpoint of quantum parameter estimation.We formulate a general no...Quantum Fisher information is used to witness the quantum phase transition in a non-Hermitian trapped ion system with balanced gain and loss,from the viewpoint of quantum parameter estimation.We formulate a general non-unitary dynamic of any two-level non-Hermitian system in the form of state vector.The sudden change in the dynamics of quantum Fisher information occurs at an exceptional point characterizing quantum criticality.The dynamical behaviors of quantum Fisher information are classified into two different ways which depends on whether the system is located in symmetry unbroken or broken phase regimes.In the phase regime where parity and time reversal symmetry are unbroken,the oscillatory evolution of quantum Fisher information is presented,achieving better quantum measurement precision.In the broken phase regime,quantum Fisher information undergoes the monotonically decreasing behavior.The maximum value of quantum estimation precision is obtained at the exceptional point.It is found that the two distinct kinds of behaviors can be verified by quantum entropy and coherence.Utilizing quantum Fisher information to witness phase transition in the non-Hermitian system is emphasized.The results may have potential applications to non-Hermitian quantum information technology.展开更多
We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminat...We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminate the light field variable, a BCS-like effective Hamiltonian is obtained to depict the residual interaction between the two atomic ensembles. The number of the tunneling collective low excitations and its relationship to the ratios g<SUB>r</SUB>/g<SUB>l</SUB> and N<SUB>r</SUB>/N<SUB>l</SUB> are given.展开更多
We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system....We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system.The Nash Equilibrium Theorem is proved for the models.展开更多
We present a two-step deterministic remote state preparation protocol for an arbitrary qubit with the aid of a three-particle Greenberger-Horne-Zeilinger state. Generalization of this protocol for higher-dimensional H...We present a two-step deterministic remote state preparation protocol for an arbitrary qubit with the aid of a three-particle Greenberger-Horne-Zeilinger state. Generalization of this protocol for higher-dimensional Hilbert space systems among three parties is also given. We show that only single-particle yon Neumann measurements, local operations, and classical communication are necessary. Moreover, since the overall information of the quantum state can be divided into two different pieces, which may be at different locations, this protocol may be useful in the quantum information field.展开更多
We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We f...We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We find that the purity of qubits A and B and the initial state of the qubit C are the two effective parameters tocontrol the entanglement dynamics of the bipartite subsystems.This study sheds some lights on the control of quantumentanglement,which would be helpful for quantum information processing.展开更多
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and...In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.展开更多
Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classica...Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered.展开更多
We construct the transition operators in terms of the generators of the general Yangian and the reduced Yangian. By acting these operators on a two-qubit pure state, we find that the entanglement degrees of the states...We construct the transition operators in terms of the generators of the general Yangian and the reduced Yangian. By acting these operators on a two-qubit pure state, we find that the entanglement degrees of the states are all decreased from the certain values to zero for the reduced Yangian algebra, which makes the state disentangled. This result sheds new light on the physical meaning of Y (sl(2) ) in quantum information.展开更多
The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its e...The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However,sometimes a quantum control can lead to a coherent partial exchange of information between the system and the dynamics of the open system might become non-Markovian. In this article, we study experimentally discrete nonMarkovian open quantum system dynamics. We implement a local control protocol using linear optics for controlling the information flow between the open system and the environment. We show how the transition from Markovian to non-Markovian dynamics can be controlled using only local operations for the open system.展开更多
We present an efficient two-step entanglement concentration protocol(ECP)for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state,using the coherent state...We present an efficient two-step entanglement concentration protocol(ECP)for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state,using the coherent state input-output process in low-Q cavity quantum electrodynamics system.In each step of the new proposed protocol,one of the three remote users prepares the auxiliary coherent optical pulses to perform cavity input-output process and then utilizes the standard homodyne measurement to discriminate the final outgoing coherent states.When both of the two steps are successful,remote parties can deterministically concentrate the less-entangled W state atoms to a standard maximally entangled W state.Compared with previous ECPs for W state,this protocol has some advantages and can be widely used in current quantum repeater and some quantum information processing tasks.展开更多
Mutually unbiased bases (MUBs) and symmetric informationally complete (SIC) positive operator-valued measurements (POVMs) are two related topics in quantum information theory. They are generalized to mutually unbiased...Mutually unbiased bases (MUBs) and symmetric informationally complete (SIC) positive operator-valued measurements (POVMs) are two related topics in quantum information theory. They are generalized to mutually unbiased measurements (MUMs) and general symmetric informationally complete (GSIC) measurements, respectively, that are both not necessarily rank 1. We study the quantum separability problem by using these measurements and present separability criteria for bipartite systems with arbitrary dimensions and multipartite systems of multi-level subsystems. These criteria are proved to be more effective than previous criteria especially when the dimensions of the subsystems are different. Furthermore, full quantum state tomography is not needed when these criteria are implemented in experiment.展开更多
Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e.,...Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating.展开更多
We develop a new geometric approach to deal with qubit information systems using colored graph theory. More precisely, we present a one to one correspondence between graph theory, and qubit systems, which may be explo...We develop a new geometric approach to deal with qubit information systems using colored graph theory. More precisely, we present a one to one correspondence between graph theory, and qubit systems, which may be explored to attack qubit information problems using torie geometry considered as a powerful tool to understand modern physics including string theory. Concretely, we examine in some details the cases of one, two, and three qubits, and we find that they are associated with CP1, CP1×CP1 and CP1×CP1× CP1 toric varieties respectively. Using a geometric procedure referred to as a colored toric geometry, we show that the qubit physics can be converted into a scenario handling toric data of such manifolds by help of hypercube graph theory. Operations on toric information can produce universal quantum gates.展开更多
We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)emb...We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)embedded in an(N^2- 1)-dimensional Euclidean space R^((N^2)-1), and we find that an orthogonal measurement is an(N- 1)-dimensional projector operator on R^((N^2)-1). The states unchanged by an orthogonal measurement form an(N- 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of(N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.展开更多
We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propos...We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propose an adaptive protocol where only 2d. 1 measurement outcomes are used to accomplish the QST for all pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography(AUPT) protocol of d2+d.1measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, T gate(/8 phase gate), and controlled-NOT gate,respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.展开更多
We study the quantum Fisher information(QFI) dynamics of the phase parameter in the enlarged cavityreservoir systems at zero temperature under two situations of large N limit and non-Markovian environment,respectively...We study the quantum Fisher information(QFI) dynamics of the phase parameter in the enlarged cavityreservoir systems at zero temperature under two situations of large N limit and non-Markovian environment,respectively.We find an important relation that the total quantities of QFI of the cavity and reservoir are equal to unit during the dynamical evolution.The lost QFI of the cavity transfers to its corresponding reservoir with the same quantities simultaneously.Moreover,we also find that the detuning parameter and non-Markovian effect are two significant factors to affect the preservation of QFI.展开更多
文摘Quantum Fisher information is used to witness the quantum phase transition in a non-Hermitian trapped ion system with balanced gain and loss,from the viewpoint of quantum parameter estimation.We formulate a general non-unitary dynamic of any two-level non-Hermitian system in the form of state vector.The sudden change in the dynamics of quantum Fisher information occurs at an exceptional point characterizing quantum criticality.The dynamical behaviors of quantum Fisher information are classified into two different ways which depends on whether the system is located in symmetry unbroken or broken phase regimes.In the phase regime where parity and time reversal symmetry are unbroken,the oscillatory evolution of quantum Fisher information is presented,achieving better quantum measurement precision.In the broken phase regime,quantum Fisher information undergoes the monotonically decreasing behavior.The maximum value of quantum estimation precision is obtained at the exceptional point.It is found that the two distinct kinds of behaviors can be verified by quantum entropy and coherence.Utilizing quantum Fisher information to witness phase transition in the non-Hermitian system is emphasized.The results may have potential applications to non-Hermitian quantum information technology.
基金国家自然科学基金,中国科学院知识创新工程项目,the Chinese Fundamental Research Program
文摘We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminate the light field variable, a BCS-like effective Hamiltonian is obtained to depict the residual interaction between the two atomic ensembles. The number of the tunneling collective low excitations and its relationship to the ratios g<SUB>r</SUB>/g<SUB>l</SUB> and N<SUB>r</SUB>/N<SUB>l</SUB> are given.
文摘We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system.The Nash Equilibrium Theorem is proved for the models.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10971247 and 10905016Hebei Natural Science Foundation of China under Grant Nos.F2009000311 and A2010000344 the Key Project of Science and Technology Research of Education Ministry of China under Grant No.207011
文摘We present a two-step deterministic remote state preparation protocol for an arbitrary qubit with the aid of a three-particle Greenberger-Horne-Zeilinger state. Generalization of this protocol for higher-dimensional Hilbert space systems among three parties is also given. We show that only single-particle yon Neumann measurements, local operations, and classical communication are necessary. Moreover, since the overall information of the quantum state can be divided into two different pieces, which may be at different locations, this protocol may be useful in the quantum information field.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10535010 and 10775123Research Fund of Education Ministry under Grant No.20070284016+1 种基金the Natural Science and Technology Foundation of Guizhou Province under Grant Nos.[2009]2267the Doctor funding of Guizhou Normal University
文摘We investigate the bipartite entanglement dynamics of the system composed by three qubits A,B,and C.There is no interaction between A and B,and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction.We find that the purity of qubits A and B and the initial state of the qubit C are the two effective parameters tocontrol the entanglement dynamics of the bipartite subsystems.This study sheds some lights on the control of quantumentanglement,which would be helpful for quantum information processing.
基金Supported by the National Fundamental Research Program under Grant No.2007CB925204the National Natural Science Foundation of China under Grant Nos.10775048 and 10325523the Education Committee of Hunan Province under Grant No.08W012
文摘In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10775076 and 10874098the National Basic Research Program of China under Grant No. 2006CB921106the Specialized Research Fund for the Doctoral Program of Education Ministry of China under Grant No. 20060003048
文摘Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775092 and 10875026Shanghai Leading Academic Discipline Project (Project number S30105)Shanghai Research Foundation under Grant No.07d222020
文摘We construct the transition operators in terms of the generators of the general Yangian and the reduced Yangian. By acting these operators on a two-qubit pure state, we find that the entanglement degrees of the states are all decreased from the certain values to zero for the reduced Yangian algebra, which makes the state disentangled. This result sheds new light on the physical meaning of Y (sl(2) ) in quantum information.
基金supported by the Magnus Ehrnrooth Foundation and Academy of Finland (287750)National Natural Science Foundation of China (61327901, 11274289 and 11325419)+1 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300)C.F.L. and J.P. acknowledge financial support from the EU Collaborative project Qu Pro CS (Grant Agreement 641277)
文摘The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However,sometimes a quantum control can lead to a coherent partial exchange of information between the system and the dynamics of the open system might become non-Markovian. In this article, we study experimentally discrete nonMarkovian open quantum system dynamics. We implement a local control protocol using linear optics for controlling the information flow between the open system and the environment. We show how the transition from Markovian to non-Markovian dynamics can be controlled using only local operations for the open system.
基金supported by the National Fundamental Research Program of China(Grant No.2010CB923202)the Specialized ResearchFund for the Doctoral Program of Education Ministry of China(GrantNo.20090005120008)the National Natural Science Foundation ofChina(Grant Nos.61177085 and 61205117)
文摘We present an efficient two-step entanglement concentration protocol(ECP)for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state,using the coherent state input-output process in low-Q cavity quantum electrodynamics system.In each step of the new proposed protocol,one of the three remote users prepares the auxiliary coherent optical pulses to perform cavity input-output process and then utilizes the standard homodyne measurement to discriminate the final outgoing coherent states.When both of the two steps are successful,remote parties can deterministically concentrate the less-entangled W state atoms to a standard maximally entangled W state.Compared with previous ECPs for W state,this protocol has some advantages and can be widely used in current quantum repeater and some quantum information processing tasks.
基金the National Natural Science Foundation of China(Grant Nos 11371005,and 11475054)the Hebei Natural Science Foundation of China(Grant No A2016205145)
文摘Mutually unbiased bases (MUBs) and symmetric informationally complete (SIC) positive operator-valued measurements (POVMs) are two related topics in quantum information theory. They are generalized to mutually unbiased measurements (MUMs) and general symmetric informationally complete (GSIC) measurements, respectively, that are both not necessarily rank 1. We study the quantum separability problem by using these measurements and present separability criteria for bipartite systems with arbitrary dimensions and multipartite systems of multi-level subsystems. These criteria are proved to be more effective than previous criteria especially when the dimensions of the subsystems are different. Furthermore, full quantum state tomography is not needed when these criteria are implemented in experiment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61071025 and 61172047)the Important Program of Hunan Provincial Education Department (Grant No. 06A038)+1 种基金Department of Education of Hunan Province (Grant No. 06C080)Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013)
文摘Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating.
文摘We develop a new geometric approach to deal with qubit information systems using colored graph theory. More precisely, we present a one to one correspondence between graph theory, and qubit systems, which may be explored to attack qubit information problems using torie geometry considered as a powerful tool to understand modern physics including string theory. Concretely, we examine in some details the cases of one, two, and three qubits, and we find that they are associated with CP1, CP1×CP1 and CP1×CP1× CP1 toric varieties respectively. Using a geometric procedure referred to as a colored toric geometry, we show that the qubit physics can be converted into a scenario handling toric data of such manifolds by help of hypercube graph theory. Operations on toric information can produce universal quantum gates.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405136 and 11547311)the Fundamental Research Funds for the Central Universities of China(Grant No.2682014BR056)
文摘We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)embedded in an(N^2- 1)-dimensional Euclidean space R^((N^2)-1), and we find that an orthogonal measurement is an(N- 1)-dimensional projector operator on R^((N^2)-1). The states unchanged by an orthogonal measurement form an(N- 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of(N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Canadian Institute for Advanced Research(CIFAR)+3 种基金the National Natural Science Foundation of China(Grant Nos11175094,91221205,11375167,11227901 and 91021005)the National Basic Research Program of China(Grant No.2015CB921002)the National Key Basic Research Program(NKBRP)(Grant Nos.2013CB921800and 2014CB848700)the National Science Fund for Distinguished Young Scholars(Grant No.11425523)
文摘We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propose an adaptive protocol where only 2d. 1 measurement outcomes are used to accomplish the QST for all pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography(AUPT) protocol of d2+d.1measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, T gate(/8 phase gate), and controlled-NOT gate,respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.
基金Supported by the National Natural Science Foundation of China under Grant No.11374096the Natural Science Foundation of Guangdong Province under Grant No.2015A030310354the Projection of Enhancing School with Innovation of Guangdong Ocean University under Grant Nos.GDOU2014050251 and GDOU2014050252
文摘We study the quantum Fisher information(QFI) dynamics of the phase parameter in the enlarged cavityreservoir systems at zero temperature under two situations of large N limit and non-Markovian environment,respectively.We find an important relation that the total quantities of QFI of the cavity and reservoir are equal to unit during the dynamical evolution.The lost QFI of the cavity transfers to its corresponding reservoir with the same quantities simultaneously.Moreover,we also find that the detuning parameter and non-Markovian effect are two significant factors to affect the preservation of QFI.