We propose a model to describe the energy structure and dynamics of a system of a molecule interacting with infinite photon modes in a vibrating microcavity whose boundary oscillates in the fundamental resonance. By c...We propose a model to describe the energy structure and dynamics of a system of a molecule interacting with infinite photon modes in a vibrating microcavity whose boundary oscillates in the fundamental resonance. By constructing an Lie algebra for the infinite photon modes, we obtain analytical expressions of the energy eigenstates, energy eigenvalues and the system's evolution operator for this Raman model under certain conditions.展开更多
InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,f...InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.展开更多
We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this appro...We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations.As an example,we solve the typical master equation for two-photon process in some limiting cases.展开更多
文摘We propose a model to describe the energy structure and dynamics of a system of a molecule interacting with infinite photon modes in a vibrating microcavity whose boundary oscillates in the fundamental resonance. By constructing an Lie algebra for the infinite photon modes, we obtain analytical expressions of the energy eigenstates, energy eigenvalues and the system's evolution operator for this Raman model under certain conditions.
文摘InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.
基金The project supported by National Natural Science Foundation of China under Grant No.10175057the President Foundation of the Chinese Academy of Sciences
文摘We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations.As an example,we solve the typical master equation for two-photon process in some limiting cases.