Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the...Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.展开更多
The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This ...The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.展开更多
Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% ...Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.展开更多
Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperatu...Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.展开更多
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition...Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.展开更多
The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theor...The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.展开更多
In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter...In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.展开更多
This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square...This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.展开更多
InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,f...InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.展开更多
A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fr...A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fractional Aharonov-Bohm oscillation. It was found that the reduction of size will lead to a very strong oscillation in the ground state energy and in the persistent current. The electronic correlation has also been demonstrated by showing the nodal structures of wave functions.展开更多
Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the ...Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.展开更多
An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed l...An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.展开更多
The two-electron Hooke's atom - a quantum mechanical system with two electrons bound in a harmonic potential - is well known for its exact analytical properties at certain oscillator strengths. The Hooke's ato...The two-electron Hooke's atom - a quantum mechanical system with two electrons bound in a harmonic potential - is well known for its exact analytical properties at certain oscillator strengths. The Hooke's atoms with more than two electrons offer more scope for valuable practical applications. In this work, we study the asymptotic structure of these Hooke's atoms in the classically forbidden region. The leading-order term of the long-range expression for the KS exchange-correlation potential v xc (r) is shown to be-1/r. The second and third higher order terms are also exactly obtained. Various components of v xc (r) are also studied. It is shown that the leading term of O(1/r) in vxc (r) is due to the pure Pauli correlation, while the leading contribution of the Coulomb correlation is of O(1/r3 ). Neither of them makes contribution to the term of O(1/r2 ), which is shown to be solely due to the kinetic correlation effect. Results for the two-electron Hooke's atom were obtained before in the literature. Our results reduce to those of the two-electron Hooke's atom as a special case.展开更多
A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, ...A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.展开更多
文摘Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
文摘The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.
文摘Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.
文摘Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.
文摘Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
文摘The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.
文摘In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.
基金High Technology Research and Development (863) Program(No.2003AA517020)
文摘This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.
文摘InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.
基金The project supported by the National Natural Science Foundation of China under Grant Nos. 10574163 and 90306016.Acknowledgments The author wishes to thank Prof. C.G. Bao and Mr. G.M. Huang for their helpful discussions.
文摘A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fractional Aharonov-Bohm oscillation. It was found that the reduction of size will lead to a very strong oscillation in the ground state energy and in the persistent current. The electronic correlation has also been demonstrated by showing the nodal structures of wave functions.
基金supported by the Mechanobiology Institute at National University of Singapore and Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2013-T2-1-154)
文摘Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.
基金Project supported by the National Natural Science Foundation of China(No.61403163)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ14G010008 and LY15F030021)
文摘An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.
文摘The two-electron Hooke's atom - a quantum mechanical system with two electrons bound in a harmonic potential - is well known for its exact analytical properties at certain oscillator strengths. The Hooke's atoms with more than two electrons offer more scope for valuable practical applications. In this work, we study the asymptotic structure of these Hooke's atoms in the classically forbidden region. The leading-order term of the long-range expression for the KS exchange-correlation potential v xc (r) is shown to be-1/r. The second and third higher order terms are also exactly obtained. Various components of v xc (r) are also studied. It is shown that the leading term of O(1/r) in vxc (r) is due to the pure Pauli correlation, while the leading contribution of the Coulomb correlation is of O(1/r3 ). Neither of them makes contribution to the term of O(1/r2 ), which is shown to be solely due to the kinetic correlation effect. Results for the two-electron Hooke's atom were obtained before in the literature. Our results reduce to those of the two-electron Hooke's atom as a special case.
基金supported by the National Natural Science Foundation of China(Nos.61372076 and 61301171)the Programme of Introducing Talents of Discipline to Universities(No.B08038)
文摘A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.