For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a sy...For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of finite or affine type, the authors define a set M which depends only on the root category R and prove that there is a bijection between M and ˙B, where R is the T^2-orbit category of the bounded derived category of the corresponding Dynkin or tame quiver. The method in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type basis of U^+.展开更多
First, the authors give a GrSbner-Shirshov basis of the finite-dimensional irre- ducible module Vq(λ) of the Drinfeld-Jimbo quantum group Uq(G2) by using the double free module method and the known GrSbner-Shirsh...First, the authors give a GrSbner-Shirshov basis of the finite-dimensional irre- ducible module Vq(λ) of the Drinfeld-Jimbo quantum group Uq(G2) by using the double free module method and the known GrSbner-Shirshov basis of Uq(G2). Then, by specializing a suitable version of Uq (G2) at q = 1, they get a GrSbner-Shirshov basis of the universal enveloping algebra U(G2) of the simple Lie algebra of type G2 and the finite-dimensional irreducible U(G2)-module V(λ).展开更多
For a quantized enveloping algebra of finite type, one can associate a natural monomial to a dominant weight. We show that these monomials for types A5 and D4 are semitight(i.e., a Z-linear combination of elements in ...For a quantized enveloping algebra of finite type, one can associate a natural monomial to a dominant weight. We show that these monomials for types A5 and D4 are semitight(i.e., a Z-linear combination of elements in the canonical basis) by a direct calculation.展开更多
基金supported by NSFC(No.11171296)the Foundation of Zhejiang Provincial Educational Committee(No.Y201327644,No.FX2014082)the Natural Science Foundation of Zhejiang Province(No.LQ13A010018,No.LZ14A010001,No.LY15A010002)
基金supported by the Fundamental Research Funds for the Central Universities(No.BLX2013014)the National Natural Science Foundation of China(No.11131001)
文摘For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of finite or affine type, the authors define a set M which depends only on the root category R and prove that there is a bijection between M and ˙B, where R is the T^2-orbit category of the bounded derived category of the corresponding Dynkin or tame quiver. The method in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type basis of U^+.
基金supported by the National Natural Science Foundation of China(Nos.11061033,11361056)
文摘First, the authors give a GrSbner-Shirshov basis of the finite-dimensional irre- ducible module Vq(λ) of the Drinfeld-Jimbo quantum group Uq(G2) by using the double free module method and the known GrSbner-Shirshov basis of Uq(G2). Then, by specializing a suitable version of Uq (G2) at q = 1, they get a GrSbner-Shirshov basis of the universal enveloping algebra U(G2) of the simple Lie algebra of type G2 and the finite-dimensional irreducible U(G2)-module V(λ).
文摘For a quantized enveloping algebra of finite type, one can associate a natural monomial to a dominant weight. We show that these monomials for types A5 and D4 are semitight(i.e., a Z-linear combination of elements in the canonical basis) by a direct calculation.