In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoup...In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.展开更多
We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the thi...We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.展开更多
The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be r...The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.展开更多
This study presents the Shannon and Renyi information entropy for both position and momentum space and the Fisher information for the position-dependent mass Schr¨odinger equation with the Frost-Musulin potential...This study presents the Shannon and Renyi information entropy for both position and momentum space and the Fisher information for the position-dependent mass Schr¨odinger equation with the Frost-Musulin potential. The analysis of the quantum mechanical probability has been obtained via the Fisher information. The variance information of this potential is equally computed. This controls both the chemical properties and physical properties of some of the molecular systems. We have observed the behaviour of the Shannon entropy. Renyi entropy, Fisher information and variance with the quantum number n respectively.展开更多
The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. ...The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.展开更多
基金National Natural Science Foundation of China under Grant No.10347004
文摘In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.
文摘We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.
文摘The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.
文摘This study presents the Shannon and Renyi information entropy for both position and momentum space and the Fisher information for the position-dependent mass Schr¨odinger equation with the Frost-Musulin potential. The analysis of the quantum mechanical probability has been obtained via the Fisher information. The variance information of this potential is equally computed. This controls both the chemical properties and physical properties of some of the molecular systems. We have observed the behaviour of the Shannon entropy. Renyi entropy, Fisher information and variance with the quantum number n respectively.
基金supported by the Science and Technology Development Plan of Qinhuangdao(No.201101A027)
文摘The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.