In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (...In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (2004) 052303], so that additional acceleration can be gained by using classical parallelism. The quantum algorithm first estimates the number of solutions using the quantum counting algorithm, and then by using the quantum searching algorithm, the explicit solutions are found.展开更多
The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant qua...The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant quantum cryptography very urgent. This motivate us to design a new key exchange protocol and eneryption scheme in this paper. Firstly, some acknowledged mathematical problems was introduced, such as ergodic matrix problem and tensor decomposition problem, the two problems have been proved to NPC hard. From the computational complexity prospective, NPC problems have been considered that there is no polynomial-time quantum algorithm to solve them. From the algebraic structures prospective, non-commutative cryptography has been considered to resist quantum. The matrix and tensor operator we adopted also satisfied with this non-commutative algebraic structures, so they can be used as candidate problems for resisting quantum from perspective of computational complexity theory and algebraic structures. Secondly, a new problem was constructed based on the introduced problems in this paper, then a key exchange protocol and a public key encryption scheme were proposed based on it. Finally the security analysis, efficiency, recommended parameters, performance evaluation and etc. were also been given. The two schemes has the following characteristics, provable security,security bits can be scalable, to achieve high efficiency, quantum resistance, and etc.展开更多
A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition i...A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.展开更多
基金supported by 973 Program under Grant No.2006CB921106National Natural Science Foundation of China under Grant No.60635040the Key Grant Project of the Ministry of Education under Grant No.306020
文摘In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (2004) 052303], so that additional acceleration can be gained by using classical parallelism. The quantum algorithm first estimates the number of solutions using the quantum counting algorithm, and then by using the quantum searching algorithm, the explicit solutions are found.
基金the National Natural Science Foundation of China,the State Key Program of National Natural Science of China,the Major Research Plan of the National Natural Science Foundation of China,Major State Basic Research Development Program of China (973 Program),the Hubei Natural Science Foundation of China
文摘The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant quantum cryptography very urgent. This motivate us to design a new key exchange protocol and eneryption scheme in this paper. Firstly, some acknowledged mathematical problems was introduced, such as ergodic matrix problem and tensor decomposition problem, the two problems have been proved to NPC hard. From the computational complexity prospective, NPC problems have been considered that there is no polynomial-time quantum algorithm to solve them. From the algebraic structures prospective, non-commutative cryptography has been considered to resist quantum. The matrix and tensor operator we adopted also satisfied with this non-commutative algebraic structures, so they can be used as candidate problems for resisting quantum from perspective of computational complexity theory and algebraic structures. Secondly, a new problem was constructed based on the introduced problems in this paper, then a key exchange protocol and a public key encryption scheme were proposed based on it. Finally the security analysis, efficiency, recommended parameters, performance evaluation and etc. were also been given. The two schemes has the following characteristics, provable security,security bits can be scalable, to achieve high efficiency, quantum resistance, and etc.
基金Supported by National Natural Science Foundation of China under Grant No.11005002 and 11475004 New Century Excellent Talent of M.O.E(NCET-11-0937) Sponsoring Program of Excellent Younger Teachers in universities in Henan Province under Grant No.2010GGJS-181
文摘A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.