By using the Holevo-Schumacher-Westmoreland theorem and through solving eigenvalues of states out from the quantum noisy channels directly, or with the help of the Bloch sphere representation, or Stokes parametrizatio...By using the Holevo-Schumacher-Westmoreland theorem and through solving eigenvalues of states out from the quantum noisy channels directly, or with the help of the Bloch sphere representation, or Stokes parametrization representation, we investigate the classical information capacities of some well-known quantum noisy channels.展开更多
An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bi...An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.展开更多
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a col...We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. The two photons in each logical qubit can be produced with a practically entangled source, i.e., a parametric down-conversion source with a beta barium borate crystal and a pump pulse of ultraviolet light. The information is encoded on each logical qubit with two logical unitary operations, which will not destroy the antinoise feather of the quantum systems. The receiver Bob can read out the sender's message directly with two single-photon measurements on each logical qubit, instead of Bell-state measurements, which will make these protocols more convenient in a practical application. With current technology, our two robust QSDC schemes are feasible and may be optimal ones.展开更多
文摘By using the Holevo-Schumacher-Westmoreland theorem and through solving eigenvalues of states out from the quantum noisy channels directly, or with the help of the Bloch sphere representation, or Stokes parametrization representation, we investigate the classical information capacities of some well-known quantum noisy channels.
基金supported by National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province of China under Grant No.2008006
文摘An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 10KJB180004)the National Natural Science Foundation of China (Grant No. 10847147)
文摘We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. The two photons in each logical qubit can be produced with a practically entangled source, i.e., a parametric down-conversion source with a beta barium borate crystal and a pump pulse of ultraviolet light. The information is encoded on each logical qubit with two logical unitary operations, which will not destroy the antinoise feather of the quantum systems. The receiver Bob can read out the sender's message directly with two single-photon measurements on each logical qubit, instead of Bell-state measurements, which will make these protocols more convenient in a practical application. With current technology, our two robust QSDC schemes are feasible and may be optimal ones.