期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
量子回归算法综述 被引量:2
1
作者 高飞 潘世杰 +2 位作者 刘海玲 秦素娟 温巧燕 《北京电子科技学院学报》 2019年第4期1-13,共13页
强大的计算能力是高效完成机器学习任务的有力保障。随着全球数据的飞速增长,更高的计算能力是机器学习领域的一个长期而紧迫的需求。利用量子计算的并行计算能力,量子机器学习算法相比于经典算法具有显著的速度优势,已经成为量子计算... 强大的计算能力是高效完成机器学习任务的有力保障。随着全球数据的飞速增长,更高的计算能力是机器学习领域的一个长期而紧迫的需求。利用量子计算的并行计算能力,量子机器学习算法相比于经典算法具有显著的速度优势,已经成为量子计算领域的研究热点。量子回归算法作为量子机器学习算法中的重要一类,近年来受到了广泛关注。本文综述了量子回归算法近年来的重要进展,包括量子线性回归、量子岭回归算法,并提出一个基于梯度下降法的量子逻辑回归算法。这些量子算法在合理的假设条件下相比经典算法有指数加速效果,展现出了量子计算的独特优势。 展开更多
关键词 机器学习 量子算法 量子回归算法
下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
2
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部