We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can r...We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can reestablish the original state. In the second stage of the protocol, with the assistance (through a single-particle projective measurement) of the preparer, the perfect copy of an original state can be produced at the site of the sender. Our scheme requires a single maximally entangled qudit pair as the quantum channel and three dits classical communication. The scheme is feasible at the expense of consuming local resources which include M - 1 ancillary qudits introduced by the receiver and additional bi-qudit operations. Moreover, we construct a sort of unitary transformations which ensure ancillary qudits are not necessarily introduced by the sender. Comparing to the previous protocols, the proposed protocol is economical due to that the cost of both quantum nonlocal resources and classical communication is lowest.展开更多
Present solar cells are expensive making photovoitaic electricity only attractive whenever there is government incentive. This paper highlights the cost of photovoltaic classified according to first, second and third ...Present solar cells are expensive making photovoitaic electricity only attractive whenever there is government incentive. This paper highlights the cost of photovoltaic classified according to first, second and third generations. The first and second generations make up the current photovoltaic. The reasons for the efficiency limitation of the first and second generation photovoltaic are given. Nanoparticles such as quantum dots have confinement properties that can be exploited to improve solar cell efficiency and help reduce the cost. Quantum effect that support hot electron collection and multiple exciton generation through impact ionization are discussed. These form the basis of the future generation quantum dot solar cell.展开更多
In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA ha...In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA has high device density, high operating speed, and extremely low powex consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.展开更多
Semiconductor sensitized solar cells(SSSCs) are promising candidates for the third generation of cost-effective photovoltaic solar cells and it is important to develop a group of robust, environment-friendly and visib...Semiconductor sensitized solar cells(SSSCs) are promising candidates for the third generation of cost-effective photovoltaic solar cells and it is important to develop a group of robust, environment-friendly and visible-light-responsive semiconductor sensitizers. In this paper, we first synthesized bismuth vanadate(Bi VO4) quantum dots by employing facile successive ionic layer adsorption and reaction(SILAR) deposition technique, which we then used as a sensitizer for solar energy conversion. The preliminary optimised oxide SSSC showed an efficiency of 0.36%, nearly 2 orders of magnitude enhancement compared with bare Ti O2, due to the narrow bandgap absorption of Bi VO4 quantum dots and intimate contact with the oxide substrate. This result not only demonstrates a simple method to prepare Bi VO4 quantum dots based solar cells, but also provides important insights into the low bandgap oxide SSSCs.展开更多
Over the past half century,the semiconductor chips have deeply influenced our everyday life through increasingly sophisticated electronic products.The central driving force underlying the remarkable evolution in semic...Over the past half century,the semiconductor chips have deeply influenced our everyday life through increasingly sophisticated electronic products.The central driving force underlying the remarkable evolution in semiconductor industry is Moore’s Law,nowadays referring to a doubling of transistor counts per chip every 18 months.Sustaining Moore’s Law is economically beneficial;while the manufacturing cost per chip has been held constant,展开更多
We present a protocol for probabilistic remote preparation of a four-particle entangled W state. The quantum channel is composed of two partial entangled four-particle cluster states. We caiculate the total successful...We present a protocol for probabilistic remote preparation of a four-particle entangled W state. The quantum channel is composed of two partial entangled four-particle cluster states. We caiculate the total successful probability and total classical communication cost required for the general case and for all kinds of the special cases, respectively. It is shown that for two maximally entangled four-particle cluster states, such a scheme for the general case has the total successful probability of 25% and only consumes the total classical communication of I bit, while this scheme for the special cases under certain conditions can possess successful probability of 50% or 100%, the required classical communication will only be 2 bits or 4 bits. Meantime, we give in detail all unitary transformations for the general case and for all kinds of the special cases, respectively.展开更多
This paper considers the economic production quantity (EPQ) problem with backorder in which the setup cost, the holding cost and the backorder cost are characterized as fuzzy variables, respectively. Following expec...This paper considers the economic production quantity (EPQ) problem with backorder in which the setup cost, the holding cost and the backorder cost are characterized as fuzzy variables, respectively. Following expected value criterion and chance constrained criterion, a fuzzy expected value model (EVM) and a chance constrained programming (CCP) model are constructed. Then fuzzy simulations are employed to estimate the expected value of fuzzy variable and c^-level minimal average cost. In order to solve the CCP model, a particle swarm optimization (PSO) algorithm based on the fuzzy simulation is designed. Finally, the effectiveness of PSO algorithm based on the fuzzy simulation is illustrated by a numerical example.展开更多
基金Supported by the National Basic Research Program of China (973 Program) under Grant No.2007CB311203the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme under Grant No.60731160626+1 种基金the National Natural Science Foundation of China under Grant Nos.60873191, 60903152, 60821001the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0220 and the 111 Project under Grant No.B08004
文摘We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can reestablish the original state. In the second stage of the protocol, with the assistance (through a single-particle projective measurement) of the preparer, the perfect copy of an original state can be produced at the site of the sender. Our scheme requires a single maximally entangled qudit pair as the quantum channel and three dits classical communication. The scheme is feasible at the expense of consuming local resources which include M - 1 ancillary qudits introduced by the receiver and additional bi-qudit operations. Moreover, we construct a sort of unitary transformations which ensure ancillary qudits are not necessarily introduced by the sender. Comparing to the previous protocols, the proposed protocol is economical due to that the cost of both quantum nonlocal resources and classical communication is lowest.
文摘Present solar cells are expensive making photovoitaic electricity only attractive whenever there is government incentive. This paper highlights the cost of photovoltaic classified according to first, second and third generations. The first and second generations make up the current photovoltaic. The reasons for the efficiency limitation of the first and second generation photovoltaic are given. Nanoparticles such as quantum dots have confinement properties that can be exploited to improve solar cell efficiency and help reduce the cost. Quantum effect that support hot electron collection and multiple exciton generation through impact ionization are discussed. These form the basis of the future generation quantum dot solar cell.
文摘In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA has high device density, high operating speed, and extremely low powex consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.
基金supported by the National Basic Research Program of China(2011CBA00700)the National High Technology Research and Development Program of China(2011AA050527)the National Natural Science Foundation of China(21403247,21173228,21103197)
文摘Semiconductor sensitized solar cells(SSSCs) are promising candidates for the third generation of cost-effective photovoltaic solar cells and it is important to develop a group of robust, environment-friendly and visible-light-responsive semiconductor sensitizers. In this paper, we first synthesized bismuth vanadate(Bi VO4) quantum dots by employing facile successive ionic layer adsorption and reaction(SILAR) deposition technique, which we then used as a sensitizer for solar energy conversion. The preliminary optimised oxide SSSC showed an efficiency of 0.36%, nearly 2 orders of magnitude enhancement compared with bare Ti O2, due to the narrow bandgap absorption of Bi VO4 quantum dots and intimate contact with the oxide substrate. This result not only demonstrates a simple method to prepare Bi VO4 quantum dots based solar cells, but also provides important insights into the low bandgap oxide SSSCs.
文摘Over the past half century,the semiconductor chips have deeply influenced our everyday life through increasingly sophisticated electronic products.The central driving force underlying the remarkable evolution in semiconductor industry is Moore’s Law,nowadays referring to a doubling of transistor counts per chip every 18 months.Sustaining Moore’s Law is economically beneficial;while the manufacturing cost per chip has been held constant,
基金Supported by the National Natural Science Foundation of China under Grant Nos.11074307,60974037,61134008,and 61273202
文摘We present a protocol for probabilistic remote preparation of a four-particle entangled W state. The quantum channel is composed of two partial entangled four-particle cluster states. We caiculate the total successful probability and total classical communication cost required for the general case and for all kinds of the special cases, respectively. It is shown that for two maximally entangled four-particle cluster states, such a scheme for the general case has the total successful probability of 25% and only consumes the total classical communication of I bit, while this scheme for the special cases under certain conditions can possess successful probability of 50% or 100%, the required classical communication will only be 2 bits or 4 bits. Meantime, we give in detail all unitary transformations for the general case and for all kinds of the special cases, respectively.
基金supported by the National Natural Science Foundation of China under Grant No. 70471049
文摘This paper considers the economic production quantity (EPQ) problem with backorder in which the setup cost, the holding cost and the backorder cost are characterized as fuzzy variables, respectively. Following expected value criterion and chance constrained criterion, a fuzzy expected value model (EVM) and a chance constrained programming (CCP) model are constructed. Then fuzzy simulations are employed to estimate the expected value of fuzzy variable and c^-level minimal average cost. In order to solve the CCP model, a particle swarm optimization (PSO) algorithm based on the fuzzy simulation is designed. Finally, the effectiveness of PSO algorithm based on the fuzzy simulation is illustrated by a numerical example.