Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will ca...Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will causestatistical fluctuations.In this paper,we apply absolutely statistical fluctuation to amend the yield and error rate of thequantum state.The relationship between exchanged number of quantum signals and key generation rate is analyzed inour simulation,which offers a useful reference for experiment.展开更多
A method, named XHJ-method, is proposed in this letter to determine the number of clusters of a data set, which incorporates with the Fuzzy Reinforced Learning Vector Quantization (FRLVQ) technique. The simulation res...A method, named XHJ-method, is proposed in this letter to determine the number of clusters of a data set, which incorporates with the Fuzzy Reinforced Learning Vector Quantization (FRLVQ) technique. The simulation results show that this new method works well for the traditional iris data and an artificial data set, which contains un-equally sized and spaced clusters.展开更多
Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genom...Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genome-wide level.This has revolutionized the way in which transcriptomes,regulatory networks and epigenetic regulations have been studied and large amounts of heterogeneous data have been generated.Although efforts are being made to integrate these datasets unbiasedly and efficiently,how best to do this still remains a challenge.Here we review major impacts of high-throughput genome-wide data generation,their relevance to human diseases,and various bioinformatics approaches for data integration.Finally,we provide a case study on inflammatory diseases.展开更多
基金Supported by the National Basic Research Program (973) of China under Grant No.2010CB923200Chinese Universities Scientific Fund BUPT2009RC0709
文摘Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will causestatistical fluctuations.In this paper,we apply absolutely statistical fluctuation to amend the yield and error rate of thequantum state.The relationship between exchanged number of quantum signals and key generation rate is analyzed inour simulation,which offers a useful reference for experiment.
基金Supported by the National Natural Science Foundation of China (No.60172065).
文摘A method, named XHJ-method, is proposed in this letter to determine the number of clusters of a data set, which incorporates with the Fuzzy Reinforced Learning Vector Quantization (FRLVQ) technique. The simulation results show that this new method works well for the traditional iris data and an artificial data set, which contains un-equally sized and spaced clusters.
文摘Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genome-wide level.This has revolutionized the way in which transcriptomes,regulatory networks and epigenetic regulations have been studied and large amounts of heterogeneous data have been generated.Although efforts are being made to integrate these datasets unbiasedly and efficiently,how best to do this still remains a challenge.Here we review major impacts of high-throughput genome-wide data generation,their relevance to human diseases,and various bioinformatics approaches for data integration.Finally,we provide a case study on inflammatory diseases.