期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
量子机器学习数据集研究
1
作者 李晓瑜 朱钦圣 +4 位作者 余莲会 杨宏 吴昊 胡帮勋 王晓霆 《信息技术与标准化》 2023年第1期19-25,共7页
为了给量子机器学习算法的开发和测试提供数据集支撑,应着力研究量子机器学习数据集。简要介绍不同类型的数据集,详细阐述了量子机器学习数据集,分析了经典数据映射的构造方式和量子系统试验中构造两种不同的量子机器学习数据集构造方式... 为了给量子机器学习算法的开发和测试提供数据集支撑,应着力研究量子机器学习数据集。简要介绍不同类型的数据集,详细阐述了量子机器学习数据集,分析了经典数据映射的构造方式和量子系统试验中构造两种不同的量子机器学习数据集构造方式,并以药物—靶点亲和力预测数据集的构建和实现为例呈现了一种实现量子机器学习数据集的过程,最后概述量子机器学习数据集国际标准化进展。 展开更多
关键词 数据 量子机器学习数据 量子数据集 量子计算 生物医药
下载PDF
Fluctuation Analysis of Decoy State QKD with Finite Data-Set Size 被引量:1
2
作者 唐少杰 焦荣珍 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第9期443-446,共4页
Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will ca... Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will causestatistical fluctuations.In this paper,we apply absolutely statistical fluctuation to amend the yield and error rate of thequantum state.The relationship between exchanged number of quantum signals and key generation rate is analyzed inour simulation,which offers a useful reference for experiment. 展开更多
关键词 quantum key distribution finite data-set size statistical fluctuation
下载PDF
DETERMINE OPTIMUM NUMBER OF COMPACT OVERLAPPED CLUSTERS USING FRLVQ TECHNIQUE
3
作者 Xu Wenhuan Huang Qiang Ji Zhen Zhang Jihong 《Journal of Electronics(China)》 2005年第6期676-680,共5页
A method, named XHJ-method, is proposed in this letter to determine the number of clusters of a data set, which incorporates with the Fuzzy Reinforced Learning Vector Quantization (FRLVQ) technique. The simulation res... A method, named XHJ-method, is proposed in this letter to determine the number of clusters of a data set, which incorporates with the Fuzzy Reinforced Learning Vector Quantization (FRLVQ) technique. The simulation results show that this new method works well for the traditional iris data and an artificial data set, which contains un-equally sized and spaced clusters. 展开更多
关键词 Reinforced learning Vector quantization Clustering analysis
下载PDF
Understanding human diseases with high-throughput quantitative measurement and analysis of molecular signatures 被引量:2
4
作者 YANG Li WEI Gang +2 位作者 TANG Kun NARDINI Christine HAN Jing-Dong J. 《Science China(Life Sciences)》 SCIE CAS 2013年第3期213-219,共7页
Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genom... Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genome-wide level.This has revolutionized the way in which transcriptomes,regulatory networks and epigenetic regulations have been studied and large amounts of heterogeneous data have been generated.Although efforts are being made to integrate these datasets unbiasedly and efficiently,how best to do this still remains a challenge.Here we review major impacts of high-throughput genome-wide data generation,their relevance to human diseases,and various bioinformatics approaches for data integration.Finally,we provide a case study on inflammatory diseases. 展开更多
关键词 GENOMICS EPIGENOMICS PHENOMICS integration data analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部