Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certai...Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant Nos.2011CDB453,2014CFB440)
文摘Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.