Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject t...Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject to the Kubo-Martin-Schwinger (KMS) condition. Consequently, in the interior of the KMS strip, i.e. from the scale B = 0 to the scale B = lplanck, the fourth coordinate g44 must be considered as complex, the two real poles being 6 = 0 and B = lplanck. This means that within the limits of the KMS strip, the Lorentzian and the Euclidean metric are in a 'quantum superposition state' (or coupled), this entailing a 'unification' (or coupling) between the topological (Euclidean) and the physical (Lorentzian) states of space-time.展开更多
The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the lo...The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 (2007) 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.展开更多
文摘Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject to the Kubo-Martin-Schwinger (KMS) condition. Consequently, in the interior of the KMS strip, i.e. from the scale B = 0 to the scale B = lplanck, the fourth coordinate g44 must be considered as complex, the two real poles being 6 = 0 and B = lplanck. This means that within the limits of the KMS strip, the Lorentzian and the Euclidean metric are in a 'quantum superposition state' (or coupled), this entailing a 'unification' (or coupling) between the topological (Euclidean) and the physical (Lorentzian) states of space-time.
基金Supported by the National Natural Science Foundation of China under Grant No. 11175019the Fundamental Research Funds for the Central Universities
文摘The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 (2007) 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.