In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and...In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.展开更多
Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were com...Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets(MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.展开更多
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect,...The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of ferrnionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we fiarther investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unrtfia effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.展开更多
Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three...Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three energy levels join in lasing. A simulation is conducted by MATLAB according to the rate equation model we obtain. The simulation results of PI characteristic, gain characteristic and intensity modulation response are reasonable. Also, the relations between the left facet reflectivity of laser cavity and threshold current as well as modulation bandwidth are studied. It is indicated that the left facet reflectivity increasing can result in reduced threshold current and improved mo6ulation bandwidth, which is in accordance with experimental results. The internal mechanism of QD lasers is fully described with the rate equation model, which is helpful for QD lasers research.展开更多
基金supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.11174370,11304387 and 61205108)the Research Plan Project of National University of Defense Technology(Grant No.ZK16-03-04)
文摘In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062 and 11005134)
文摘Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets(MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.
基金the National Key Basic Research Program of China (Grant Nos. 2013CB921800 and 2014CB848700)the National Natural Science Foundation of China (Grant Nos. 11227901, 91021005, 11375167, 11374308, 11104262 and 11275183)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01030400)
文摘The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of ferrnionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we fiarther investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unrtfia effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.
文摘Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three energy levels join in lasing. A simulation is conducted by MATLAB according to the rate equation model we obtain. The simulation results of PI characteristic, gain characteristic and intensity modulation response are reasonable. Also, the relations between the left facet reflectivity of laser cavity and threshold current as well as modulation bandwidth are studied. It is indicated that the left facet reflectivity increasing can result in reduced threshold current and improved mo6ulation bandwidth, which is in accordance with experimental results. The internal mechanism of QD lasers is fully described with the rate equation model, which is helpful for QD lasers research.