The quantum dynamics of an exciton dressed by acoustic pnonons in an optically driven quantum dotsemiconductor microcavity at finite temperatures is investigated theoretically by quantum optics methods. It is shown ...The quantum dynamics of an exciton dressed by acoustic pnonons in an optically driven quantum dotsemiconductor microcavity at finite temperatures is investigated theoretically by quantum optics methods. It is shown that the temperature dependence of the vacuum Rabi splitting is 2√2g×exp[ - ∑qλq(Nq+1/2)],where Nq=1/[exp(ωq/kBT)-1] is the phonon population, g is the single-photon Rabi frequency, and λq corresponds to exciton-phonon coupling.展开更多
Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photons...Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photonspin interaction. The two schemes axe both deterministic and can be extended to multipartite secret sharing.展开更多
We extend an optimal entanglement distillation of the triplet Greenberger–Horne–Zeilinger(GHZ) state via entanglement concentrating in the three-partite partially electron-spin-entangled systems. Two entanglement co...We extend an optimal entanglement distillation of the triplet Greenberger–Horne–Zeilinger(GHZ) state via entanglement concentrating in the three-partite partially electron-spin-entangled systems. Two entanglement concentration protocols are similarly designed in detail with the post-selection in quantum-dot(QD) and micro-cavity coupled systems. The proposed protocol can be repeated several rounds to achieve an optimal success probability with an assistance of the ancillary QD, where only the single photon needs to pass through the micro-cavity for each round. It increases the total success probability of the distillation even if the implemented cavity is imperfect in practice during the whole process.展开更多
We present an entanglement analysis protocol on entangled electron spins using quantum dot(QD)and microcavity coupled system.Each quantum dot is placed in the microcavity and ancilla photon input-output process could ...We present an entanglement analysis protocol on entangled electron spins using quantum dot(QD)and microcavity coupled system.Each quantum dot is placed in the microcavity and ancilla photon input-output process could be used to check the parity of the quantum dots.After the parity check process,the user only needs to measure the spin direction of the QD spin,and the state information can be readout completely.The feasibility of our scheme and the experimental challenge are discussed by considering currently available techniques.展开更多
文摘The quantum dynamics of an exciton dressed by acoustic pnonons in an optically driven quantum dotsemiconductor microcavity at finite temperatures is investigated theoretically by quantum optics methods. It is shown that the temperature dependence of the vacuum Rabi splitting is 2√2g×exp[ - ∑qλq(Nq+1/2)],where Nq=1/[exp(ωq/kBT)-1] is the phonon population, g is the single-photon Rabi frequency, and λq corresponds to exciton-phonon coupling.
文摘Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photonspin interaction. The two schemes axe both deterministic and can be extended to multipartite secret sharing.
基金Supported by the National Natural Science Foundation of China under Grant No.61379153the New Century Excellent Talents in University,China(NCET-11-0510)+1 种基金partly by the Research Plan Projects of Science–Technology Department of Hunan Province under Grant No.2012TZ2017the Construct Program of the Key Discipline in Hunan Province
文摘We extend an optimal entanglement distillation of the triplet Greenberger–Horne–Zeilinger(GHZ) state via entanglement concentrating in the three-partite partially electron-spin-entangled systems. Two entanglement concentration protocols are similarly designed in detail with the post-selection in quantum-dot(QD) and micro-cavity coupled systems. The proposed protocol can be repeated several rounds to achieve an optimal success probability with an assistance of the ancillary QD, where only the single photon needs to pass through the micro-cavity for each round. It increases the total success probability of the distillation even if the implemented cavity is imperfect in practice during the whole process.
基金supported by the National Fundamental Research Program(Grant No.2010CB923202)the Specialized Research Fund for the Doctoral Program of Education Ministry of China(Grant No.20090005120008)the Fundamental Research Funds for the Central Universities,the National Natural Science Foundation of China(Grant Nos.61178010 and 61205117)
文摘We present an entanglement analysis protocol on entangled electron spins using quantum dot(QD)and microcavity coupled system.Each quantum dot is placed in the microcavity and ancilla photon input-output process could be used to check the parity of the quantum dots.After the parity check process,the user only needs to measure the spin direction of the QD spin,and the state information can be readout completely.The feasibility of our scheme and the experimental challenge are discussed by considering currently available techniques.