期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
量子矩阵空间M_q(2)及量子群sl_q(2)的坐标代数的Grobner-Shirshov基 被引量:1
1
作者 木娜依木·迪里夏提 《山西师范大学学报(自然科学版)》 2019年第1期15-19,共5页
本文用合成运算方法给出量子矩阵空间M_q(2)的坐标代数O(M_q(2))及量子群sl_q(2)的坐标代数O(sl_q(2))的Gr?bner-Shirshov基,并且作为一个应用,我们还给出了量子矩阵空间M_q(2)的坐标代数O(M_q(2))及量子群sl_q(2)的坐标代数O(sl_q(2))... 本文用合成运算方法给出量子矩阵空间M_q(2)的坐标代数O(M_q(2))及量子群sl_q(2)的坐标代数O(sl_q(2))的Gr?bner-Shirshov基,并且作为一个应用,我们还给出了量子矩阵空间M_q(2)的坐标代数O(M_q(2))及量子群sl_q(2)的坐标代数O(sl_q(2))的一组线性基. 展开更多
关键词 量子矩阵空间 量子 坐标代数 Grobner-Shirshov基
下载PDF
M-Theory in the Gaugeon Formalism
2
作者 Mir Faizal 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第4期637-640,共4页
In this paper we will analyse the Aharony-Bergman-Jafferis-Maldacena(ABJM) theory in N = 1 superspace formalism.We then study the quantum gauge transformations for this ABJM theory in gaugeon formalism.We will also an... In this paper we will analyse the Aharony-Bergman-Jafferis-Maldacena(ABJM) theory in N = 1 superspace formalism.We then study the quantum gauge transformations for this ABJM theory in gaugeon formalism.We will also analyse the extended BRST symmetry for this ABJM theory in gaugeon formalism and show that these BRST transformations for this theory are nilpotent and this in turn leads to the unitary evolution of the S-matrix. 展开更多
关键词 ABJM gaugeon BRST N = 1 superspace
原文传递
THERMAL EQUILIBRIUM AND KMS CONDITION AT THE PLANCK SCALE
3
作者 G.BOGDANOFF I.BOGDANOFF 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第2期267-274,共8页
Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject t... Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject to the Kubo-Martin-Schwinger (KMS) condition. Consequently, in the interior of the KMS strip, i.e. from the scale B = 0 to the scale B = lplanck, the fourth coordinate g44 must be considered as complex, the two real poles being 6 = 0 and B = lplanck. This means that within the limits of the KMS strip, the Lorentzian and the Euclidean metric are in a 'quantum superposition state' (or coupled), this entailing a 'unification' (or coupling) between the topological (Euclidean) and the physical (Lorentzian) states of space-time. 展开更多
关键词 KMS state Planck scale KMS strip
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部