Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHo...Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHorne -Zeilinger(GHZ) states.This protocol is robust against eavesdropping and could be used for the circumstance of many parties.展开更多
This paper presents a simple and novel quantum secret sharing scheme using GHZ-like state. The characteristics of the GHZ-like state are used to develop the quantum secret sharing scheme. In contrast with the other GH...This paper presents a simple and novel quantum secret sharing scheme using GHZ-like state. The characteristics of the GHZ-like state are used to develop the quantum secret sharing scheme. In contrast with the other GHZ-based QSS protocols with the same assumptions, the proposed protocol provides the best quantum bit efficiency.展开更多
A multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was proposed by Gao [Commun. Theor. Phys. 52 (2009) 421] recently. This study points out that the performance of Gao...A multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was proposed by Gao [Commun. Theor. Phys. 52 (2009) 421] recently. This study points out that the performance of Gao's protocol can be much improved by using the technique of decoy single photons and carefully modifying the protocol to remove some unnecessary unitary operations, devices, and transmissions.展开更多
A multi-party quantum secret sharing protocol using two entangled states, φ0〉 = 1/√2 (1+)n + 1-)n) and (φ1)1) =1/√2 (1+)n -1-〉n), is proposed and analyzed. In this protocol, without requiring to gen...A multi-party quantum secret sharing protocol using two entangled states, φ0〉 = 1/√2 (1+)n + 1-)n) and (φ1)1) =1/√2 (1+)n -1-〉n), is proposed and analyzed. In this protocol, without requiring to generate any photon or do any local unitary operation, an agent can obtain a shadow of the secret key by simply performing a measurement of single photon. Furthermore, the security of the protocol is analyzed. It shows that no agent can obtain the manager's secret without the help of the other agents, and any eavesdropper will be detected if he/she tries to steal the manager's secret under ideal or noisy quantum channels.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.60878059,11004033Natural Science Foundation of Fujian Province under Grant No.2010J01002
文摘Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHorne -Zeilinger(GHZ) states.This protocol is robust against eavesdropping and could be used for the circumstance of many parties.
基金Supported by the National Science Council,Taiwan,China,under the Contract No.NSC 98-2221-E-006-097-MY3
文摘This paper presents a simple and novel quantum secret sharing scheme using GHZ-like state. The characteristics of the GHZ-like state are used to develop the quantum secret sharing scheme. In contrast with the other GHZ-based QSS protocols with the same assumptions, the proposed protocol provides the best quantum bit efficiency.
基金Supported by the National Science Council of Taiwan under Contract No. NSC99-2221-E-471-001
文摘A multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was proposed by Gao [Commun. Theor. Phys. 52 (2009) 421] recently. This study points out that the performance of Gao's protocol can be much improved by using the technique of decoy single photons and carefully modifying the protocol to remove some unnecessary unitary operations, devices, and transmissions.
基金supported by the National Science Council of the Republic of China,Taiwan,China (Grant No. NSC 98-2221-E-006-097-MY3)
文摘A multi-party quantum secret sharing protocol using two entangled states, φ0〉 = 1/√2 (1+)n + 1-)n) and (φ1)1) =1/√2 (1+)n -1-〉n), is proposed and analyzed. In this protocol, without requiring to generate any photon or do any local unitary operation, an agent can obtain a shadow of the secret key by simply performing a measurement of single photon. Furthermore, the security of the protocol is analyzed. It shows that no agent can obtain the manager's secret without the help of the other agents, and any eavesdropper will be detected if he/she tries to steal the manager's secret under ideal or noisy quantum channels.