Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strate...Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strategy for realizing rapid and specific determination of V. parahaemolyticus by labeling its monoclonal antibody (Ab) with quantum dots (QDs). The results showed that the fluorescence of these QDs-Ab bioconjugates was quenched by graphene oxide (GO) to produce a bacteri- um capture probe. And the optimal quenched concentration of GO was 60 ng/ml. When the bacterium capture probe was exposed to the target, green color fluores- cence was turned on by releasing the QDs-Ab due to the antibody antigen combi- nation. The detection limit of V. parahaemolyticus was 104 CFU/ml based on 3 times signal-to-noise ratio. The specificity of the FRET sensor towards V. para- haemolyticus was examined by comparing with controls such as V. splendidus, V. alginolyticus, Edwardsiella tarda and Aeromonas hydrophila with the same condition. The controls couldn't cause obvious fluorescence alteration, while the target resulted in significant fluorescence enhancement. This strategy could be further used as a universal method for any bacterial determination by changing the conjugated antibod- ies in early disease diagnosis. Therefore, the sensor has good potential to expand its application to the early diagnosis and determination of bacteria.展开更多
Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer q...Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.展开更多
The pyrolysis mechanisms of quinoline and isoquinoline were investigated using the density functional theory of quantum chemistry,including eight reaction paths and a common tautomeric intermediate 1-indene imine.It i...The pyrolysis mechanisms of quinoline and isoquinoline were investigated using the density functional theory of quantum chemistry,including eight reaction paths and a common tautomeric intermediate 1-indene imine.It is concluded that the conformational tautomerism of the intermediate decides the pyrolysis products(C6H6,HC≡C—C≡N,C6H5C≡N and HC≡CH)to be the same,and also decides the total disappearance rates of the reactants to be the same,for both original reactants quinoline and isoquinoline during the pyrolysis reaction.The results indicate that the intramolecular hydrogen migration is an important reaction step,which often appears in the paths of the pyrolysis mechanism.The activation energies of the rate determining steps are obtained.The calculated results are in good agreement with the experimental results.展开更多
基金Supported by Shandong Scientific and Technological Development Program(2014GHY115024)~~
文摘Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strategy for realizing rapid and specific determination of V. parahaemolyticus by labeling its monoclonal antibody (Ab) with quantum dots (QDs). The results showed that the fluorescence of these QDs-Ab bioconjugates was quenched by graphene oxide (GO) to produce a bacteri- um capture probe. And the optimal quenched concentration of GO was 60 ng/ml. When the bacterium capture probe was exposed to the target, green color fluores- cence was turned on by releasing the QDs-Ab due to the antibody antigen combi- nation. The detection limit of V. parahaemolyticus was 104 CFU/ml based on 3 times signal-to-noise ratio. The specificity of the FRET sensor towards V. para- haemolyticus was examined by comparing with controls such as V. splendidus, V. alginolyticus, Edwardsiella tarda and Aeromonas hydrophila with the same condition. The controls couldn't cause obvious fluorescence alteration, while the target resulted in significant fluorescence enhancement. This strategy could be further used as a universal method for any bacterial determination by changing the conjugated antibod- ies in early disease diagnosis. Therefore, the sensor has good potential to expand its application to the early diagnosis and determination of bacteria.
基金National Natural Science Foundation of China under Grant No.10575017
文摘Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.
基金Supported by the National Basic Research Program of China (2005CB221203), the National Natural Science Foundation of China (20576087, 20776093) and the Foundation of Shanxi Province (2006011022, 2009021015).
文摘The pyrolysis mechanisms of quinoline and isoquinoline were investigated using the density functional theory of quantum chemistry,including eight reaction paths and a common tautomeric intermediate 1-indene imine.It is concluded that the conformational tautomerism of the intermediate decides the pyrolysis products(C6H6,HC≡C—C≡N,C6H5C≡N and HC≡CH)to be the same,and also decides the total disappearance rates of the reactants to be the same,for both original reactants quinoline and isoquinoline during the pyrolysis reaction.The results indicate that the intramolecular hydrogen migration is an important reaction step,which often appears in the paths of the pyrolysis mechanism.The activation energies of the rate determining steps are obtained.The calculated results are in good agreement with the experimental results.