Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce...Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality.展开更多
Pulmonary embolism occurs more frequently after hepatectomy than previously thought but is infrequently associated with peripheral deep vein thrombosis. In this paper, we report 2 cases of postoperative hepatic vein t...Pulmonary embolism occurs more frequently after hepatectomy than previously thought but is infrequently associated with peripheral deep vein thrombosis. In this paper, we report 2 cases of postoperative hepatic vein thrombosis after liver resection. Both patients had undergone major hepatectomy of a non-cirrhotic liver largely exposing the middle hepatic vein. Clots were incidentally found in the middle hepatic vein 4 and 17 d after surgery despite routine systemic thrombo-prophylaxis with low molecular weight heparin. Coagulation of the transition plan in a context of mutation of the prothrombin gene and inflammation induced biloma were the likely predisposing conditions. Clots disappeared following curative anticoagulation. We conclude that thrombosis of hepatic veins may occur after liver resection and is a potential source of pulmonary embolism.展开更多
We investigate the site occupancy and the interfacial energetics of TiAl-Ti3Al binary-phase system with H using a first-principles method. H energetically prefers to occupy the Ti-rich octahedral interstitial site bec...We investigate the site occupancy and the interfacial energetics of TiAl-Ti3Al binary-phase system with H using a first-principles method. H energetically prefers to occupy the Ti-rich octahedral interstitial site because H prefers to bond with Ti rather than with Al. The occupancy tendency of H in the binary phase TiAl-Ti3Al alloy from high to low is α2-Ti3Al to γ/α2 interface and 7-TiAl, because the decrease of the Ti local concentration is in the same order. We demonstrate that H can largely affect the mechanical properties of the TiAl-Ti3Al system. On the one hand, H at the interface reduces the interface energy with the H2 molecule as a reference, implying the TiAl/Ti3Al interface is stabilized. On the other hand, the ratio between the cleavage energy and the unstable stacking fault energy decreases after H-doping, indicating H will reduce the ductility of the TiAl/Ti3Al interface. Consequently, the mechanical property variation of TiA1 alloy due to the presence of H not only depends on the amount of TiAl/Ti3Al interfaces but also is related to the H concentration in the alloy.展开更多
Gaussian boson sampling is an alternative model for demonstrating quantum computational supremacy,where squeezed states are injected into every input mode, instead of applying single photons as in the case of standard...Gaussian boson sampling is an alternative model for demonstrating quantum computational supremacy,where squeezed states are injected into every input mode, instead of applying single photons as in the case of standard boson sampling. Here by analyzing numerically the computational costs, we establish a lower bound for achieving quantum computational supremacy for a class of Gaussian bosonsampling problems. Specifically, we propose a more efficient method for calculating the transition probabilities, leading to a significant reduction of the simulation costs. Particularly, our numerical results indicate that one can simulate up to 18 photons for Gaussian boson sampling at the output subspace on a normal laptop, 20 photons on a commercial workstation with 256 cores, and about 30 photons for supercomputers. These numbers are significantly smaller than those in standard boson sampling, suggesting that Gaussian boson sampling could be experimentally-friendly for demonstrating quantum computational supremacy.展开更多
We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending...We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures.展开更多
Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state 丨i 丨of the chain is swapped into the state 丨N - i丨 within a time evolution interval r. Such a phenomenon is an i...Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state 丨i 丨of the chain is swapped into the state 丨N - i丨 within a time evolution interval r. Such a phenomenon is an interesting way of transfering entanglement. An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past. We exploit such an expressions for calculating the evolution times in chains of both two and three spins. In the case of a chain of two qubits, we derive conditions under which the associated four Bell states diagonalize the Hamiltonian. It is found that for the two Bell states 丨Ф+) and 丨Ф-), perfect mirroring does not occur (i.e. entanglement is not preserved under swapping). On the other hand, perfect single qubit mirror effect (entanglement preservation) indeed occurs for the other two Bell states 丨ψ+) and 丨ψ-) which are mapped into 丨Ф+) and 丨Ф-) respectively. For the case of a chain of three qubits, the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states ψl, ψ2, X1, and X2are studied. Due to the fact that quantum mirroring preserves maximal entanglement, the states ψ1 and ψ2 are not altered. However, quantum mirroring changes the states X1 and X2 only if we apply perfect quantum state mirroring in the site a = 1 of the three qubits spin chain. The above constrains the preservation of maximal entanglement under qubit mirroring of such a state. Due to the fact that swapping has already been experimentally tested, a posible, experimental implementations of single qubit mirroring is possible.展开更多
基金jointly supported by the National Natural Science Foundation of China (No.61501042)the National High Technology Research and Development Program(863) of China (2015AA016101)+1 种基金Beijing Nova Program(Z151100000315078)Information Network Open Source Platform and Technology Development Strategy(No.2016-XY-09)
文摘Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality.
文摘Pulmonary embolism occurs more frequently after hepatectomy than previously thought but is infrequently associated with peripheral deep vein thrombosis. In this paper, we report 2 cases of postoperative hepatic vein thrombosis after liver resection. Both patients had undergone major hepatectomy of a non-cirrhotic liver largely exposing the middle hepatic vein. Clots were incidentally found in the middle hepatic vein 4 and 17 d after surgery despite routine systemic thrombo-prophylaxis with low molecular weight heparin. Coagulation of the transition plan in a context of mutation of the prothrombin gene and inflammation induced biloma were the likely predisposing conditions. Clots disappeared following curative anticoagulation. We conclude that thrombosis of hepatic veins may occur after liver resection and is a potential source of pulmonary embolism.
文摘We investigate the site occupancy and the interfacial energetics of TiAl-Ti3Al binary-phase system with H using a first-principles method. H energetically prefers to occupy the Ti-rich octahedral interstitial site because H prefers to bond with Ti rather than with Al. The occupancy tendency of H in the binary phase TiAl-Ti3Al alloy from high to low is α2-Ti3Al to γ/α2 interface and 7-TiAl, because the decrease of the Ti local concentration is in the same order. We demonstrate that H can largely affect the mechanical properties of the TiAl-Ti3Al system. On the one hand, H at the interface reduces the interface energy with the H2 molecule as a reference, implying the TiAl/Ti3Al interface is stabilized. On the other hand, the ratio between the cleavage energy and the unstable stacking fault energy decreases after H-doping, indicating H will reduce the ductility of the TiAl/Ti3Al interface. Consequently, the mechanical property variation of TiA1 alloy due to the presence of H not only depends on the amount of TiAl/Ti3Al interfaces but also is related to the H concentration in the alloy.
基金supported by the Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06D348)Natural Science Foundation of Guangdong Province (2017B030308003)+6 种基金the Key R&D Program of Guangdong Province (2018B030326001)the Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20170412152620376, JCYJ20170817105046702 and KYTDPT20181011104202253)the National Natural Science Foundation of China (11875160 and U1801661)supported by the National Natural Science Foundation of China (61832003, 61872334)the Economy, Trade and Information Commission of Shenzhen Municipality (201901161512)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000)K. C. Wong Education Foundation
文摘Gaussian boson sampling is an alternative model for demonstrating quantum computational supremacy,where squeezed states are injected into every input mode, instead of applying single photons as in the case of standard boson sampling. Here by analyzing numerically the computational costs, we establish a lower bound for achieving quantum computational supremacy for a class of Gaussian bosonsampling problems. Specifically, we propose a more efficient method for calculating the transition probabilities, leading to a significant reduction of the simulation costs. Particularly, our numerical results indicate that one can simulate up to 18 photons for Gaussian boson sampling at the output subspace on a normal laptop, 20 photons on a commercial workstation with 256 cores, and about 30 photons for supercomputers. These numbers are significantly smaller than those in standard boson sampling, suggesting that Gaussian boson sampling could be experimentally-friendly for demonstrating quantum computational supremacy.
文摘We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures.
文摘Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state 丨i 丨of the chain is swapped into the state 丨N - i丨 within a time evolution interval r. Such a phenomenon is an interesting way of transfering entanglement. An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past. We exploit such an expressions for calculating the evolution times in chains of both two and three spins. In the case of a chain of two qubits, we derive conditions under which the associated four Bell states diagonalize the Hamiltonian. It is found that for the two Bell states 丨Ф+) and 丨Ф-), perfect mirroring does not occur (i.e. entanglement is not preserved under swapping). On the other hand, perfect single qubit mirror effect (entanglement preservation) indeed occurs for the other two Bell states 丨ψ+) and 丨ψ-) which are mapped into 丨Ф+) and 丨Ф-) respectively. For the case of a chain of three qubits, the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states ψl, ψ2, X1, and X2are studied. Due to the fact that quantum mirroring preserves maximal entanglement, the states ψ1 and ψ2 are not altered. However, quantum mirroring changes the states X1 and X2 only if we apply perfect quantum state mirroring in the site a = 1 of the three qubits spin chain. The above constrains the preservation of maximal entanglement under qubit mirroring of such a state. Due to the fact that swapping has already been experimentally tested, a posible, experimental implementations of single qubit mirroring is possible.