虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模...虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模型,该模型能够兼顾二次调频净利润及调频效果;研究一种自适应权重的改进量子粒子群优化(quantum particle swarm optimization,QPSO)算法,通过引入自适应权重机制,在量子粒子更新过程中动态调整权重参数以提高算法的搜索能力和收敛速度;并将改进算法应用于两阶段优化过程中,使虚拟电厂获得更高的二次调频净利润及更好的调频效果;仿真结果表明,所提改进算法的收敛速度更快且全局寻优能力更强。展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。