期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
ACCQPSO:一种改进的量子粒子群优化算法及其应用
1
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
下载PDF
基于量子行为粒子群算法的舱室噪声监测点优化布置
2
作者 郭强 时胜国 何辉辉 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第8期1488-1496,共9页
针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,... 针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,基于量子行为粒子群算法对监测点位置进行优化,获得优化布置方案。从声腔模态采样的正交性及内外声场响应的角度与其他测点布置方案进行了性能比较。研究表明:本文方法优化得到的测点布置方案采集声腔模态信息更全面,可有效提升舱室内声场的重建精度和基于舱室内声场监测的水下辐射噪声预报精度。 展开更多
关键词 测点优化布置 舱室噪声在线监测 量子行为粒子算法 声腔模态 模态置信矩阵 水下辐射噪声预报 声场预报 声激励
下载PDF
基于改进量子粒子群优化算法的机器人逆运动学求解 被引量:1
3
作者 陈卓凡 周坤 +1 位作者 秦菲菲 王斌锐 《中国机械工程》 EI CAS CSCD 北大核心 2024年第2期293-304,共12页
针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行... 针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行程平稳连续的约束条件,设计了目标函数;其次,通过采用Levy飞行策略改进粒子更新方式、非线性地动态调整收缩膨胀因子、采用变权重方法计算最优平均位置等方法设计了一种改进量子粒子群优化(IQPSO)算法;然后,模拟单点位姿和连续轨迹两种不同的求解情况进行三种算法(IQPSO、APSO、QPSO)的仿真对比实验,结果表明IQPSO算法具有收敛速度快、求解精度高等优点;最后,将IQPSO算法用于机械臂本体进行实物验证,实验结果表明IQPSO算法求解出的插值点所组成的轨迹连续且平滑,进一步证明了该算法应用于实际运动控制中的稳定性和可行性。 展开更多
关键词 工业机器人 逆运动学求解 目标函数 改进量子粒子优化算法
下载PDF
采用改进量子粒子群优化算法的虚拟电厂参与二次调频两阶段优化
4
作者 朱靖恺 崔勇 +3 位作者 杜洋 见伟 刘炳 孙昭宇 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期112-120,共9页
虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模... 虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模型,该模型能够兼顾二次调频净利润及调频效果;研究一种自适应权重的改进量子粒子群优化(quantum particle swarm optimization,QPSO)算法,通过引入自适应权重机制,在量子粒子更新过程中动态调整权重参数以提高算法的搜索能力和收敛速度;并将改进算法应用于两阶段优化过程中,使虚拟电厂获得更高的二次调频净利润及更好的调频效果;仿真结果表明,所提改进算法的收敛速度更快且全局寻优能力更强。 展开更多
关键词 虚拟电厂 改进量子粒子优化算法 两阶段优化 二次调频 优化调度
下载PDF
基于改进量子粒子群算法的叶片延长翼型厚度优化设计
5
作者 周晓东 肖正江 +1 位作者 杨坤鹏 牛保佳 《节能技术》 CAS 2024年第4期345-352,共8页
针对如何平衡载荷与升阻比以优化翼型厚度的问题,采用一种改进量子粒子群算法(IQPSO)对翼型厚度进行计算优化,以国产某2 MW风机为例,通过对延长前后的叶尖速比、风能利用率、叶根载荷、升阻比、功率以及发电量等试验数据对比分析来验证... 针对如何平衡载荷与升阻比以优化翼型厚度的问题,采用一种改进量子粒子群算法(IQPSO)对翼型厚度进行计算优化,以国产某2 MW风机为例,通过对延长前后的叶尖速比、风能利用率、叶根载荷、升阻比、功率以及发电量等试验数据对比分析来验证所采用的方法。验证结果显示,叶片延长后,优化翼型厚度为15%。同时,在升阻比平均提高约3.156%的基础上,叶根增加载荷水平在Mx、My、Mz方向上最多分别提高了12.3%、12.7%、12.5%,且均在安全范围13%内,发电量相较于历史水平提升34.71%。从而表明通过采用IQPOS进行叶片翼型厚度优化后,在满足叶片承受载荷的前提下,能够显著提高升阻比,可实现风力发电机的性能提升,达到稳定提高发电量的目的。 展开更多
关键词 改进量子粒子算法 叶片延长 翼型厚度优化 气动性能
下载PDF
基于改进量子粒子群算法的机器人关节空间运动轨迹规划优化
6
作者 杨龙 罗岚 《自动化技术与应用》 2024年第8期12-15,共4页
机器人轨迹规划是机器人运动控制实现的关键步骤,轨迹规划的效率与精度直接关系到机器人运动控制的实时性与准确性。将机器人运动轨迹映射到关节空间,并建立轨迹规划的数学模型,使其满足运动过程中的各项物理约束,并避免各关节间的耦合... 机器人轨迹规划是机器人运动控制实现的关键步骤,轨迹规划的效率与精度直接关系到机器人运动控制的实时性与准确性。将机器人运动轨迹映射到关节空间,并建立轨迹规划的数学模型,使其满足运动过程中的各项物理约束,并避免各关节间的耦合问题。针对量子粒子群算法进行改进,提高其收敛速度,避免陷入局部最优,提出改进量子粒子群算法,并将之应用于机器人轨迹规划的数学模型求解。并且对基于改进量子粒子群算法的机器人关节空间轨迹规划进行测试。测试结果表明,该方法可以代替传统的机器人轨迹规划算法,并且在精度和效率方面具有更高的优势。 展开更多
关键词 机器人 轨迹规划 优化模型 关节空间 改进量子粒子算法
下载PDF
基于量子粒子群算法优化LSTM的短期风电负荷预测模型
7
作者 李享蔚 郑雅姣 《现代工业经济和信息化》 2024年第7期238-239,242,共3页
为了提高短期电力负荷预测的精度,研究了一种基于QPSO算法对LSTM神经网络进行优化的算法,并根据LSTM神经网络以及QPSO算法的基本原理,利用QPSO算法优化模型隐含层节点数、训练次数和学习率,建立QPSO-LSTM短期风电负荷预测模型[1]。解决... 为了提高短期电力负荷预测的精度,研究了一种基于QPSO算法对LSTM神经网络进行优化的算法,并根据LSTM神经网络以及QPSO算法的基本原理,利用QPSO算法优化模型隐含层节点数、训练次数和学习率,建立QPSO-LSTM短期风电负荷预测模型[1]。解决了因网络结构及模型参数的不确定性产生的精度问题,并将该模型与传统的神经网络模型进行了对比。仿真结果表明,QPSO-LSTM模型较传统的LSTM模型预测精度更高。 展开更多
关键词 LSTM神经网络 量子粒子优化算法QPSO QPSO-LSTM
下载PDF
基于随机增强量子粒子群算法的弹性波数值模拟
8
作者 朱孟权 刘洪 +2 位作者 王之洋 李幼铭 Yu Du-li 《Applied Geophysics》 SCIE CSCD 2024年第1期80-92,204,共14页
在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的... 在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的收敛速度远低于随机增强量子粒子群算法。数值频散分析表明,基于随机增强量子粒子群算法的优化有限差分格式具有更大的频谱覆盖范围并将精度误差控制在了有效范围之内,这意味着随机增强量子粒子群算法具有更好的搜索全局精确解的能力。最后,采用基于随机增强量子粒子群算法的优化有限差分格式对弹性波动方程进行数值模拟。数值模拟结果表明,基于随机增强量子粒子群算法的优化有限差分格式能有效压制数值频散。 展开更多
关键词 有限差分 量子粒子算法 多参数优化
下载PDF
量子粒子群优化算法求解非线性方程组
9
作者 睢贵芳 林金娜 《电脑编程技巧与维护》 2023年第3期44-46,共3页
研究了量子粒子群优化算法求解非线性方程组问题,该算法用量子位的概率幅对粒子的位置进行编码,用量子旋转门更新量子位的概率幅值。优化算法求解非线性方程组可以在指定区间内搜索到相应的实数解,将优化和传统方法做比较,仿真实验验证... 研究了量子粒子群优化算法求解非线性方程组问题,该算法用量子位的概率幅对粒子的位置进行编码,用量子旋转门更新量子位的概率幅值。优化算法求解非线性方程组可以在指定区间内搜索到相应的实数解,将优化和传统方法做比较,仿真实验验证了优化算法的有效性。 展开更多
关键词 量子粒子 量子旋转门 非线性方程组 函数优化
下载PDF
基于随机森林和量子粒子群优化的SVM算法 被引量:2
10
作者 崔兆亿 耿秀丽 《计算机集成制造系统》 EI CSCD 北大核心 2023年第9期2929-2936,共8页
特征属性过多及内部参数的优选是影响支持向量机(SVM)模型泛化能力的重要因素,针对以上两个问题,为了提高SVM模型的泛化能力和分类精度,将随机森林(RF)算法和量子粒子群优化(QPSO)算法结合优化SVM模型的核函数参数和惩罚因子。首先利用R... 特征属性过多及内部参数的优选是影响支持向量机(SVM)模型泛化能力的重要因素,针对以上两个问题,为了提高SVM模型的泛化能力和分类精度,将随机森林(RF)算法和量子粒子群优化(QPSO)算法结合优化SVM模型的核函数参数和惩罚因子。首先利用RF算法计算出每个特征的重要性,通过特征选择筛选出重要性高的特征作为特征子集;再利用QPSO算法的全局搜索能力寻找出SVM模型的最优核函数参数和惩罚因子,最后将最优参数应用于SVM模型中进行分类预测。实验仿真结果表明,与其他机器学习算法相比,所提模型具有较高的训练精度和预测精度,也证实了该模型具有较好的鲁棒性和泛化性能。 展开更多
关键词 随机森林 量子粒子优化 支持向量机 特征选择 鲁棒性
下载PDF
基于量子粒子群优化的多波束卫星联合资源分配算法 被引量:1
11
作者 高威 王磊 瞿连政 《计算机应用研究》 CSCD 北大核心 2023年第3期868-873,879,共7页
当使用元启发式算法求解多波束卫星联合资源分配问题时,时延约束和容量约束会导致计算复杂度增大,且算法难以收敛。对此,通过在目标函数中引入惩罚机制,在无效解的目标函数值加入了惩罚值,使得算法的优化解自适应地满足这两个约束。在... 当使用元启发式算法求解多波束卫星联合资源分配问题时,时延约束和容量约束会导致计算复杂度增大,且算法难以收敛。对此,通过在目标函数中引入惩罚机制,在无效解的目标函数值加入了惩罚值,使得算法的优化解自适应地满足这两个约束。在此基础上,提出了基于量子粒子群优化的联合资源分配算法。仿真结果表明,惩罚策略的引入解决了应用元启发式算法时,难以处理时延约束和容量约束的问题,而带有惩罚机制的量子粒子群算法在分配公平性指数、总系统容量上均优于已有联合分配算法。 展开更多
关键词 多波束卫星 联合资源分配 量子粒子优化 惩罚策略 约束处理
下载PDF
基于改进量子粒子群算法电动汽车充放电优化调度 被引量:1
12
作者 赵晨龙 《电气开关》 2023年第4期59-62,共4页
随着电动汽车的保有量的逐年上升以及在“双碳”战略的目标引领下,无规划的大批量电动汽车充电行为易导致电网波动过大,降低电网运行可靠性。根据现行分时电价和电动汽车进网情况,通过改进量子粒子群算法求解考虑电网负荷波动和电动汽... 随着电动汽车的保有量的逐年上升以及在“双碳”战略的目标引领下,无规划的大批量电动汽车充电行为易导致电网波动过大,降低电网运行可靠性。根据现行分时电价和电动汽车进网情况,通过改进量子粒子群算法求解考虑电网负荷波动和电动汽车用户成本的调度优化模型。分析分时电价与固定电价仿真结果,结果表明:改进量子粒子群算法在优化电动汽车充放电计划上运用的有效性,能够有效达到对电网负荷的“削峰填谷”作用。 展开更多
关键词 电动汽车 优化调度 改进量子粒子
下载PDF
基于量子粒子群算法的公共空间主功能区布局优化设计方法 被引量:1
13
作者 张婧婧 施亭亭 汪强 《齐齐哈尔大学学报(自然科学版)》 2023年第6期66-71,共6页
为了提升公共空间主功能区布局合理性,提出基于量子粒子群算法的公共空间主功能区布局优化设计方法。将城市公共空间不同功能区测绘数据分为空间数据和非空间数据,进行数据转换处理。利用深度神经网络提取公共空间主功能区空间分布特征... 为了提升公共空间主功能区布局合理性,提出基于量子粒子群算法的公共空间主功能区布局优化设计方法。将城市公共空间不同功能区测绘数据分为空间数据和非空间数据,进行数据转换处理。利用深度神经网络提取公共空间主功能区空间分布特征;建立公共空间主功能区布局优化设计模型,将复杂的布局问题转换为模型形式,并设置模型约束条件;基于量子粒子群算法求解布局优化模型,实现公共空间主功能区布局优化设计。测试结果表明,该方法能够对公共空间主功能区布局进行合理的优化设计,设计效果较好。 展开更多
关键词 量子粒子算法 布局优化 主功能区
下载PDF
基于改进自适应量子行为粒子群算法的交直流混合配电网协调优化方法 被引量:1
14
作者 陈涛 冯德品 +2 位作者 徐兵 姬帅 赵中华 《山东电力技术》 2023年第7期13-22,43,共11页
随着系统日益庞大,交直流混合配电网的拓扑结构与系统潮流计算将更为复杂,各单元的协调控制已成为配电网经济、稳定运行的关键,恰当的控制方案可助力各单元协调控制进一步优化。针对此问题,提出一种多时间尺度下交直流混合配电网的能量... 随着系统日益庞大,交直流混合配电网的拓扑结构与系统潮流计算将更为复杂,各单元的协调控制已成为配电网经济、稳定运行的关键,恰当的控制方案可助力各单元协调控制进一步优化。针对此问题,提出一种多时间尺度下交直流混合配电网的能量管理系统优化运行的控制策略,通过与分布式电源、蓄电池、主从换流站等本地控制相结合,使得配电网能最大限度地降低总体电能损耗和各节点电压偏差。本文首先描述交直流混合配电网系统模型,然后建立交直流混合配电网能量管理系统的优化模型,在此基础上,采用改进的自适应量子行为粒子群算法,求解能量管理系统多目标函数的优化问题,以提高算法的求解效率和全局搜索的能力。最后,为验证算法的可行性和有效性,选择33节点的算例进行仿真验证。 展开更多
关键词 交直流混合配电网 改进自适应量子行为粒子算法 多目标优化 能量管理系统
下载PDF
改进量子粒子群算法在水电站群优化调度中的应用 被引量:26
15
作者 冯仲恺 廖胜利 +3 位作者 牛文静 申建建 程春田 李泽宏 《水科学进展》 EI CAS CSCD 北大核心 2015年第3期413-422,共10页
针对量子粒子群算法求解水电站群优化调度问题存在的早熟收敛、寻优能力欠佳等缺陷,从种群初始化、进化和变异等方面提出了改进量子粒子群算法。该方法引入混沌搜索增强初始种群质量;通过加权更新种群最优位置中心改善种群进化模式并提... 针对量子粒子群算法求解水电站群优化调度问题存在的早熟收敛、寻优能力欠佳等缺陷,从种群初始化、进化和变异等方面提出了改进量子粒子群算法。该方法引入混沌搜索增强初始种群质量;通过加权更新种群最优位置中心改善种群进化模式并提升收敛速度;利用邻域变异搜索增加种群多样性避免早熟收敛。同时依据问题特点设计了矩阵实数编码方式与复杂约束处理方法。乌江梯级综合对比分析表明所提方法能切实保证快速获得高质量优化调度结果,有效提高梯级水能利用率,如长序列模拟调度较逐步优化算法分别减少8.9%的弃水和72.3%的耗时,是一种适用于大规模水电站群优化调度的高效实用方法。 展开更多
关键词 量子粒子 水电站 优化调度 混沌 进化模式 变异
下载PDF
一种基于粒子群优化方法的改进量子遗传算法及应用 被引量:33
16
作者 周殊 潘炜 +2 位作者 罗斌 张伟利 丁莹 《电子学报》 EI CAS CSCD 北大核心 2006年第5期897-901,共5页
本文采用粒子群优化(PSO)方法代替量子门来更新量子比特状态,得到一种改进的量子遗传算法(QGA)———PSQGA,并根据QGA自身概率特性,引入了最优解方差函数来评价该算法的稳定性能.利用四种典型连续函数寻优问题和0/1背包问题,分别对PSQG... 本文采用粒子群优化(PSO)方法代替量子门来更新量子比特状态,得到一种改进的量子遗传算法(QGA)———PSQGA,并根据QGA自身概率特性,引入了最优解方差函数来评价该算法的稳定性能.利用四种典型连续函数寻优问题和0/1背包问题,分别对PSQGA和改进的使用量子门的量子遗传算法(IQGA)进行了测试;并将它们应用到图像稀疏分解的实例中.结果表明,PSQGA算法的寻优能力及稳定性均优于IQGA,且具有更好的收敛性以及更强的连续空间搜索能力,适合于求解复杂优化问题. 展开更多
关键词 量子遗传算法 量子计算 粒子优化 0/1背包问题 稀疏分解
下载PDF
带交叉算子的量子粒子群优化算法 被引量:17
17
作者 陈汉武 朱建锋 +2 位作者 阮越 刘志昊 赵生妹 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期23-29,共7页
为了改善量子粒子群优化(QPSO)算法、提高其求解多峰优化问题的能力,采用新的粒子吸引点和势阱特征长度计算方法,引入遗传算法中的交叉算子并融入交叉概率自适应的参数控制技术,设计了一种带交叉算子的量子粒子群优化(CQPSO)算法.CQPSO... 为了改善量子粒子群优化(QPSO)算法、提高其求解多峰优化问题的能力,采用新的粒子吸引点和势阱特征长度计算方法,引入遗传算法中的交叉算子并融入交叉概率自适应的参数控制技术,设计了一种带交叉算子的量子粒子群优化(CQPSO)算法.CQPSO算法既可确保QPSO粒子群体的多样性、维护粒子整体的活力性,又能克服特殊情况下QPSO算法收敛的不稳定性和陷入局部最优的偶发性.实验结果表明,在21个标准测试函数中,无论对应单峰函数、多峰函数或是偏移、旋转函数,在相同的物理仿真平台上,CQPSO算法的性能在绝大多数情况下都优于其他改进的量子粒子群算法,从而验证了CQPSO算法的有效性和鲁棒性. 展开更多
关键词 量子粒子优化 交叉算子 局部优化 多峰函数 收敛
下载PDF
基于佳点集构造的改进量子粒子群优化算法 被引量:27
18
作者 陈义雄 梁昔明 黄亚飞 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期1409-1414,共6页
针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,... 针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理。仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高。 展开更多
关键词 粒子优化 混沌 早熟收敛 佳点集 量子粒子优化
下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
19
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归机
下载PDF
混沌量子粒子群优化算法 被引量:21
20
作者 林星 冯斌 孙俊 《计算机工程与设计》 CSCD 北大核心 2008年第10期2610-2612,共3页
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率。数值实验结果表明... 针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率。数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法。 展开更多
关键词 量子粒子优化算法 混沌搜索 早熟 效率高 粒子算法
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部