现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协...现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。展开更多
虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模...虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模型,该模型能够兼顾二次调频净利润及调频效果;研究一种自适应权重的改进量子粒子群优化(quantum particle swarm optimization,QPSO)算法,通过引入自适应权重机制,在量子粒子更新过程中动态调整权重参数以提高算法的搜索能力和收敛速度;并将改进算法应用于两阶段优化过程中,使虚拟电厂获得更高的二次调频净利润及更好的调频效果;仿真结果表明,所提改进算法的收敛速度更快且全局寻优能力更强。展开更多
文摘现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。