期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种新的量子群进化算法研究 被引量:13
1
作者 王岩 路春一 +3 位作者 丰小月 黄艳新 邹淑雪 周春光 《小型微型计算机系统》 CSCD 北大核心 2006年第8期1478-1482,共5页
提出了一种基于量子进化的量子群进化算法,使用量子角表示量子比特的状态,并引入改进的粒子群优化策略,对量子群中各量子的量子角进行自适应动态调整.在对0-1背包问题的求解中,表现出很好的性能.
关键词 量子进化 子群优化 背包问题 量子群进化 量子
下载PDF
Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines 被引量:7
2
作者 Jun-hong ZHANG Yu LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期272-286,共15页
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en... Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines. 展开更多
关键词 Diesel Fault diagnosis Complete ensemble intrinsic time-scale decomposition (CE1TD) l east square supportvector machine (LSSVM) Hybrid differential evolution and particle swarm optimization (HDEPSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部