期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
量子自组织特征映射神经网络
1
作者 叶梓 《福建电脑》 2024年第1期21-26,共6页
自组织特征映射是典型的无监督神经网络算法。它运用竞争学习策略实现数据分类。然而当网络中神经元个数为多项式时,自组织特征映射算法训练容易受到计算力挑战。为了降低算法训练的时间复杂度,本文提出了一个量子经典混合的自组织特征... 自组织特征映射是典型的无监督神经网络算法。它运用竞争学习策略实现数据分类。然而当网络中神经元个数为多项式时,自组织特征映射算法训练容易受到计算力挑战。为了降低算法训练的时间复杂度,本文提出了一个量子经典混合的自组织特征映射神经网络算法,利用量子叠加性和量子纠缠性对经典算法进行加速。在神经网络训练过程中,算法利用量子相位估计和Grover搜索算法并行实现相似度计算和标签提取。理论分析表明,本文提出的量子算法相比于经典算法在数据维度上具有指数加速。 展开更多
关键词 量子神经网络 量子相位估计 Grover搜索算法 自组织特征映射
下载PDF
自组织特征映射神经网络在岩爆分级预测中的应用
2
作者 付自国 李化 +2 位作者 邓建辉 陈菲 王佳信 《地下空间与工程学报》 CSCD 北大核心 2023年第1期334-342,共9页
岩爆是地下工程一种常见的动力灾害。为了提高岩爆预测精度和探究岩爆参数之间的潜在关系,本文借签一种自组织特征映射神经网络(SOFM),构建了岩爆烈度分级预测的无监督学习模型。结合国内外岩爆判据,选取围岩最大切应力、单轴抗压强度... 岩爆是地下工程一种常见的动力灾害。为了提高岩爆预测精度和探究岩爆参数之间的潜在关系,本文借签一种自组织特征映射神经网络(SOFM),构建了岩爆烈度分级预测的无监督学习模型。结合国内外岩爆判据,选取围岩最大切应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数及弹性能量指数6个参数作为评价指标。将46个典型的岩爆案例输入到竞争层为2×2拓扑结构的SOFM模型中进行训练。结果表明:SOFM模型具有可靠的聚类能力,其正判率为90%;与现有的有监督学习模型进行了比较,验证了本文建立的SOFM模型的优越性;最后,对SOFM聚类结果分析发现,脆性系数对轻微、中等及强岩爆的影响权重均较大,选取的6个评价指标对强岩爆和中等岩爆区分并不明显。 展开更多
关键词 岩爆分级 自组织特征映射 神经网络 预测
下载PDF
自组织特征映射神经网络在测井岩性识别中的应用 被引量:44
3
作者 张治国 杨毅恒 夏立显 《地球物理学进展》 CSCD 北大核心 2005年第2期332-336,共5页
为了解决测井岩性识别问题,引入具有较强的聚类和容错能力的自组织特征映射(SOFM)神经网络.在说明SOFM网络的模型和算法的基础上,结合某地的实际测井资料,建立SOFM网络岩性识别模型,进行岩性识别的应用研究.结果表明,识别的准确率较高,... 为了解决测井岩性识别问题,引入具有较强的聚类和容错能力的自组织特征映射(SOFM)神经网络.在说明SOFM网络的模型和算法的基础上,结合某地的实际测井资料,建立SOFM网络岩性识别模型,进行岩性识别的应用研究.结果表明,识别的准确率较高,证明SOFM网络可以用于解决测井岩性识别问题,具有很好的应用前景. 展开更多
关键词 自组织特征映射 人工神经网络 测井资料 岩性识别
下载PDF
应用自组织特征映射神经网络技术实现分布式入侵检测 被引量:4
4
作者 杨森 姚光开 柴乔林 《计算机应用》 CSCD 北大核心 2003年第8期54-57,共4页
文中描述了一种应用自组织特征映射神经网络技术构建的分布式入侵检测系统模型,介绍了自组织特征映射神经网络的学习算法、训练过程以及在线检测流程,具有良好的自组织、自适应的能力,为网络安全运行提供了一种入侵检测手段。
关键词 自组织特征映射 神经网络 入侵检测 分布式 自适应
下载PDF
利用自组织特征映射神经网络进行可视化聚类 被引量:9
5
作者 白耀辉 陈明 《计算机仿真》 CSCD 2006年第1期180-183,共4页
自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛的应用。它将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。该文说明了自组织特征映射神经网络的工作... 自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛的应用。它将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。该文说明了自组织特征映射神经网络的工作原理和具体实现算法,同时利用一个算例展示了利用自组织特征映射进行聚类时的可视化特性,包括聚类过程的可视化和聚类结果的可视化,这也是自组织特征映射得到广泛应用的原因之一。 展开更多
关键词 聚类 自组织特征映射 神经网络 可视化
下载PDF
一个基于自组织特征映射网络的混合神经网络结构(英文) 被引量:4
6
作者 戴群 陈松灿 王喆 《软件学报》 EI CSCD 北大核心 2009年第5期1329-1336,共8页
将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严... 将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严重缺陷.提出此集成型网络的动机是,利用BP-SOM良好的知识解释能力和ICBP网络良好的推广性和自适应性构造一个ICBP-SOM模型,它具有良好的知识表示能力和极具竞争力的推广性能.在6个基准数据集上的实验结果验证了这一集成型网络的可行性和有效性. 展开更多
关键词 神经网络 圆型反向传播网络 改进的圆型反向传播网络 自组织特征映射 BP—SOM 分类
下载PDF
基于自组织特征映射神经网络的短期负荷预测 被引量:5
7
作者 赵菁 彭慧敏 +1 位作者 张家亮 谢维廉 《贵州工业大学学报(自然科学版)》 CAS 2003年第2期57-62,共6页
提出了一种基于自组织特征映射神经网络(Kohonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞... 提出了一种基于自组织特征映射神经网络(Kohonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析证明了该方法的有效性。 展开更多
关键词 短期负荷预测 自组织特征映射 神经网络 电力系统
下载PDF
基于自组织特征映射神经网络的图像压缩 被引量:4
8
作者 朱翔 吴贻鼎 《计算机工程》 CAS CSCD 北大核心 2003年第20期121-123,共3页
简要介绍了基于自组织特征映射(SOFM)神经网络的图像压缩的传统算法。通过对传统方法的优缺点分析,提出了一种新的简单的矢量量化压缩方法。新算法采用分类码书设计和残留编码,大大提高了图像的客观指标和主观视觉效果。实验表明此... 简要介绍了基于自组织特征映射(SOFM)神经网络的图像压缩的传统算法。通过对传统方法的优缺点分析,提出了一种新的简单的矢量量化压缩方法。新算法采用分类码书设计和残留编码,大大提高了图像的客观指标和主观视觉效果。实验表明此方法明显优于传统的SOFM算法,而且易于硬件实现。 展开更多
关键词 矢量量化 自组织特征映射 神经网络 分类码书 图像压缩
下载PDF
2004年欧洲杯足球球队技战术能力评价的自组织特征映射神经网络模型的研究 被引量:6
9
作者 王铁生 钟平 《广州体育学院学报》 北大核心 2005年第3期64-66,91,共4页
通过对2004年欧洲杯足球赛16支球队的进球、射门、射门命中率、角球、控球、成功传球、抢断、被抢断、犯规、越位和失球等11项攻防技术指标进行主成分分析的基础上,确定球队技战术能力评价的综合指标。引入自组织特征映射神经网络模型,... 通过对2004年欧洲杯足球赛16支球队的进球、射门、射门命中率、角球、控球、成功传球、抢断、被抢断、犯规、越位和失球等11项攻防技术指标进行主成分分析的基础上,确定球队技战术能力评价的综合指标。引入自组织特征映射神经网络模型,提出了基于自组织特征映射网络的球队分类方法,该方法在无指导的情况下,通过对自组织学习,实现了合理、科学的球队分类。分类结果客观反映了2004年欧洲杯各队技战术的综合实力,揭示了世界足球运动的发展趋势,并探索出一种合理评价球队技战术水平的方法。 展开更多
关键词 足球 2004年欧洲杯 自组织特征映射 神经网络 攻防指标
下载PDF
自组织特征映射神经网络用于语音识别的研究 被引量:3
10
作者 胡光锐 吴硕 《应用科学学报》 CAS CSCD 1997年第1期55-60,共6页
该文提出了一种优化的自组织学习算法。基于自组织特征映射(SOM)神经网络和隐马尔柯夫模型(HMM)法,组成了一种新的语音识别系统,该系统采用SOM网络作为矢量量化器。SOM网络经过优化的自组织学习算法训练后,再用K均... 该文提出了一种优化的自组织学习算法。基于自组织特征映射(SOM)神经网络和隐马尔柯夫模型(HMM)法,组成了一种新的语音识别系统,该系统采用SOM网络作为矢量量化器。SOM网络经过优化的自组织学习算法训练后,再用K均值聚类算法对其进行调整。实验结果表明,该文提出的语音识别方法确实能提高系统的识别率。 展开更多
关键词 语音识别 语音处理 神经网络 自组织特征映射
下载PDF
基于自组织特征映射神经网络的矢量量化 被引量:10
11
作者 陆哲明 孙圣和 《中国图象图形学报(A辑)》 CSCD 2000年第10期846-850,共5页
近年来 ,许多学者已经成功地将 Kohonen的自组织特征映射 (SOFM)神经网络应用于矢量量化 (VQ)图象压缩编码 .相对于传统的 L BG算法 ,基本的 SOFM算法的两个主要缺点是计算量大和生成的码书性能较差 ,因此为了改善码书性能 ,对基本的 S... 近年来 ,许多学者已经成功地将 Kohonen的自组织特征映射 (SOFM)神经网络应用于矢量量化 (VQ)图象压缩编码 .相对于传统的 L BG算法 ,基本的 SOFM算法的两个主要缺点是计算量大和生成的码书性能较差 ,因此为了改善码书性能 ,对基本的 SOFM算法的权值调整方法作了一些改进 ,同时为了降低计算量 ,又在决定获胜神经元的过程中 ,采用了快速搜索算法 .在将改进的算法用于矢量量化码书设计后 ,并把生成的码书用于图象的压缩编码 .测试结果表明 ,改进的算法使码书设计的计算量得到明显的降低 ,而且码书的性能得到了提高 .相对于基本算法 ,码书设计的计算时间减少了约 75 % .在图象编码中 ,不论是训练集内的图象 ,还是训练集外的图象 ,相对于基本算法 ,编码质量均提高了 0 .80 d B~ 0 .90 d B. 展开更多
关键词 矢量量化 自组织特征映射神经网络 图象压缩
下载PDF
基于自组织特征映射神经网络的聚类分析 被引量:10
12
作者 丁硕 常晓恒 巫庆辉 《信息技术》 2014年第6期18-21,共4页
在深入研究自组织特征映射(Self-organizing Feature Mapping,SOFM)神经网络的结构和聚类算法的基础上,阐述了SOFM网络的建立方法。以随机二维向量的聚类为例,利用所建立的SOFM网络模型对输入的随机二维向量进行聚类,并着重研究了输出... 在深入研究自组织特征映射(Self-organizing Feature Mapping,SOFM)神经网络的结构和聚类算法的基础上,阐述了SOFM网络的建立方法。以随机二维向量的聚类为例,利用所建立的SOFM网络模型对输入的随机二维向量进行聚类,并着重研究了输出层神经元拓扑结构、训练步数对聚类结果的影响以及在相同拓扑结构条件下,SOFM网络模型的权值向量的调整过程。仿真结果表明:在输出层神经元节点形式为六边型条件下,输出层神经元的个数越多,SOFM网络模型的聚类结果就越准确;在相同的拓扑结构条件下,训练步数越大,SOFM网络聚类结果越准确,但过大的训练步数对于聚类结果的影响甚微。 展开更多
关键词 自组织特征映射 人工神经网络 聚类 拓扑结构
下载PDF
自组织特征映射神经网络在厄尔尼诺事件检验中的应用 被引量:1
13
作者 林玎 刘伟 张治国 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2006年第4期609-612,共4页
对厄尔尼诺事件多因素成因进行了分析。利用自组织特征映射(SOFM)神经网络方法对1973~1994年的全球7级以上地震次数、日食条件、海温距平数据建立了SOFM网络检验模型。对1995~2000年厄尔尼诺事件进行了检验,检验的准确率为83.3%。
关键词 自组织特征映射 人工神经网络 厄尔尼诺 日食 海温 地震
下载PDF
基于自组织特征映射神经网络的边坡稳定性评价 被引量:1
14
作者 李英 郄志红 +1 位作者 吴鑫淼 赵兰敏 《水利水电技术》 CSCD 北大核心 2006年第9期20-22,共3页
将自组织特征映射神经网络(SOFM)应用于边坡稳定性分析,建立了评价边坡稳定状态的SOFM网络模型,并以工程实例对网络进行了训练和检验,研究结果表明,SOFM网络性能良好、预测精度高、简单易行,是边坡稳定性评价的一种有效方法。
关键词 自组织特征映射神经网络(SOFM) 边坡稳定 评价
下载PDF
自组织特征映射神经网络的区域经济发展聚类分析 被引量:4
15
作者 周建新 罗晓玲 付传秀 《贵州大学学报(自然科学版)》 2008年第2期127-129,194,共4页
自组织特征映射(SOM)神经网络是无教师自组织、自学习网络,具有优良的数据聚类功能。基于选取的区域经济发展评价指标,对2006年我国31个省(地区)的综合经济实力进行聚类分析。结合主成分得分对聚类结果综合评价,实证效果较好。
关键词 区域经济 自组织特征映射神经网络 聚类分析
下载PDF
语音自组织特征映射神经网络矢量量化算法 被引量:1
16
作者 孙燕 姜占才 潘春花 《计算机技术与发展》 2016年第9期175-177,182,共4页
针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为... 针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为矢量进行自组织特征映射神经网络矢量量化及LBG矢量量化,通过实验对二者进行比较。仿真结果表明,自组织特征映射神经网络矢量量化算法得到的码书比LBG算法具有量化误差小、码本尺寸小的特点,进而可以节省存储空间。实验结果表明,文中方法具有一定的实用性。 展开更多
关键词 LBG算法 自组织特征映射神经网络 MFCC参数 矢量量化
下载PDF
基于自组织特征映射神经网络的高压断路器故障诊断 被引量:8
17
作者 张好勇 张东亮 +1 位作者 高树军 张华 《电气应用》 2016年第23期21-24,共4页
高压断路器在电力系统中起到了控制、保护、配电和监视等作用,是重要的电力设备,其运行可靠性对电力系统安全、稳定运行具有重要意义。在建立高压断路器故障诊断模型及其运行状态特征参量选取的基础上,利用自组织特征映射(Self-Organizi... 高压断路器在电力系统中起到了控制、保护、配电和监视等作用,是重要的电力设备,其运行可靠性对电力系统安全、稳定运行具有重要意义。在建立高压断路器故障诊断模型及其运行状态特征参量选取的基础上,利用自组织特征映射(Self-Organizing feature Map,SOM)神经网络在模式聚类中的优越性,实现高压断路器的故障诊断。 展开更多
关键词 高压断路器 自组织特征映射神经网络 特征参量 故障诊断
下载PDF
基于自组织特征映射神经网络的数字模式识别 被引量:3
18
作者 许新征 曾文华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期333-336,共4页
在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛... 在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛两个阶段,并分别采用不同的学习率和邻域函数.采用改进后的SOFM算法对输入样本进行自组织聚类,再利用学习矢量量化(LVQ)算法解决样本分类中的交迭问题,提高了分类精度.仿真实验结果表明,该网络能够识别常用的数字(0~9)和英文字母,特别是在有噪声污染的情况下,可以获得较好的效果. 展开更多
关键词 自组织特征映射神经网络 数字模式识别 SOFM算法 学习矢量量化 自组织聚类 随机选择 改进算法 收敛速度 学习算法 连接权值 经验确定 高斯函数 样本分类 噪声污染 英文字母 仿真实验 分类精度 学习率 再利用 邻域
下载PDF
基于自组织特征映射神经网络的金银花分类研究 被引量:5
19
作者 申明金 《化学分析计量》 CAS 2013年第2期35-37,共3页
自组织特征映射神经网络(SOM)以无监督方式进行网络训练,具有自组织功能。网络通过自身训练,自动对输入模式进行分类。中药药用价值与其所含微量元素有直接的关系,药材分类是中药质量控制的重要方法。将金银花中微量元素含量作为网络输... 自组织特征映射神经网络(SOM)以无监督方式进行网络训练,具有自组织功能。网络通过自身训练,自动对输入模式进行分类。中药药用价值与其所含微量元素有直接的关系,药材分类是中药质量控制的重要方法。将金银花中微量元素含量作为网络输入,利用自组织特征映射神经网络对不同产地金银花进行分类。结果表明分类效果较好,符合生产实际。 展开更多
关键词 自组织特征映射神经网络 金银花 分类
下载PDF
基于自组织特征映射神经网络的点云数据分区 被引量:3
20
作者 刘雪梅 董文胜 +1 位作者 张树生 洪歧 《华北水利水电学院学报》 2004年第2期59-62,共4页
自组织特征映射神经网络SOFM可以实现无监督的特征聚类.利用SOFM实现逆向工程中点云数据分区,通过改进SOFM网络初始权值方法以及引进能量函数控制迭代次数,提高了SOFM的分区效率.利用SOFM方法实现点云数据分区具有较强的容错性能,对测... 自组织特征映射神经网络SOFM可以实现无监督的特征聚类.利用SOFM实现逆向工程中点云数据分区,通过改进SOFM网络初始权值方法以及引进能量函数控制迭代次数,提高了SOFM的分区效率.利用SOFM方法实现点云数据分区具有较强的容错性能,对测量数据点无任何要求.实例运行结果验证了此方法的可行性. 展开更多
关键词 自组织特征映射 神经网络 数据分区 逆向工程
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部