We propose the supereonneetion formalism to construct the off-shell BRST-VSUSY superalgebra for D = 4 BF theories. The method is based on the natural introduction of physical fields as well as auxiliary fields via sup...We propose the supereonneetion formalism to construct the off-shell BRST-VSUSY superalgebra for D = 4 BF theories. The method is based on the natural introduction of physical fields as well as auxiliary fields via supereon- neetions and their associated supereurvatures defined on a superspaee. We also give a prescription to build the off-shell BRST-VSUSY exact quantum action.展开更多
We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entangl...We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generallzed concurrence, from the monotonicity and convexity the entanglement of formafion for a class of high-dimensional mixed states has been calculated analytically,展开更多
A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental ...A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U (θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.展开更多
One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodyna...One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.展开更多
We show that Wu-Yang theory of fully quantized four-wave mixing can be generalized to the six-wave mixing and derive the analytical solution of the coupled equations describing the quantum dynamics of six-wave mixing.
In this article, we study the pentaquark state Θ+(1540) with a (scalar) diquark-(pseudoscalar) diquarkantiquark type interpolating current in the framework of the QCD sum rules approach by including the contri...In this article, we study the pentaquark state Θ+(1540) with a (scalar) diquark-(pseudoscalar) diquarkantiquark type interpolating current in the framework of the QCD sum rules approach by including the contributions from the direct instantons. The numerical results indicate that the contributions from the direct instantons are very small and can be safely neglected.展开更多
With the help of scattering-matrix method, the acoustic phonon ballistic transmission and the thermal conductivity are studied detailedly in a four-terminal structure. We find that the transmission coefficients and th...With the help of scattering-matrix method, the acoustic phonon ballistic transmission and the thermal conductivity are studied detailedly in a four-terminal structure. We find that the transmission coefficients and the reduced thermal conductance for each region sensitively depend on geometric parameters, and are of quantum character, but the reduced total thermal conductance for all regions seems independent of structure parameters when the temperature is not very low. Our results show that one can control the thermal conductivity for each region to match practical requirements in devices by adjusting the geometric parameters.展开更多
Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism ...Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential, Furthermore, making use of the b-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.展开更多
We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMc...We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMcriterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite andmultipartite systems.展开更多
A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum fie...A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.展开更多
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By ...Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = O/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results.展开更多
We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given valu...We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.展开更多
Assuming that the recently θ+ and other exotic resonances belong to the pentaquark i0 of SU(3)I with J^P = 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation th...Assuming that the recently θ+ and other exotic resonances belong to the pentaquark i0 of SU(3)I with J^P = 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory. The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, Ξ and N, we estimated the mass of Σ and the a terms.展开更多
The problem on the set-theoretical solutions to the quantum Yang-Baxter equation was presented byDrinfel'd as a main unsolved problem in quantum group theory. The set-theoretical solutions are a natural extensiono...The problem on the set-theoretical solutions to the quantum Yang-Baxter equation was presented byDrinfel'd as a main unsolved problem in quantum group theory. The set-theoretical solutions are a natural extensionof the usual (linear) solutions. In this paper, we not only give a further study on some known set-theoretical solutions(the Venkov's solutions), but also find a new kind of set-theoretical solutions which have a geometric interpretation.Moreover, the new solutions lead to the metahomomorphisms in group theory.展开更多
We show that the quantum world with non-local states and original statistics is statistically separable. According to relativistic dynamics, the super-luminal signal transmission is impossible. The present quantum the...We show that the quantum world with non-local states and original statistics is statistically separable. According to relativistic dynamics, the super-luminal signal transmission is impossible. The present quantum theory is therefore consistent with the relativity and the causality.展开更多
We extend basic entropies in the classical information theory to matrix ones in the quantum information theory. Then we show that relations between matrix entropies similar to the classical ones hold.
We investigate the neutron star magnetic field by the relative mean-field theory, where the photon effective mass depending on baryon density of charged particles is nonzero. This field is produced by star itself, whi...We investigate the neutron star magnetic field by the relative mean-field theory, where the photon effective mass depending on baryon density of charged particles is nonzero. This field is produced by star itself, which is the function of baryon density. The result fits the observations.展开更多
The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action...The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.展开更多
By exposing deficiency of the usual superoperators that have no explicit operator-expression in quantuminformation theory we introduce thermo entangled state representation to endow each of these superoperators a defi...By exposing deficiency of the usual superoperators that have no explicit operator-expression in quantuminformation theory we introduce thermo entangled state representation to endow each of these superoperators a definiteoperator-expression in an enlarged space in which one mode is a fictitious.This helps us to directly derive the role ofexponential of superoperators and the solutions of some master equations.展开更多
In this paper, a quantum model for the binomial market in finance is proposed. We show that its risk-neutral world exhibits an intriguing structure as a disk in the unit ball of R^3, whose radius is a function of the ...In this paper, a quantum model for the binomial market in finance is proposed. We show that its risk-neutral world exhibits an intriguing structure as a disk in the unit ball of R^3, whose radius is a function of the risk-free interest rate with two thresholds which prevent arbitrage opportunities from this quantum market. Furthermore, from the quantum mechanical point of view we re-deduce the Cox-Ross-Rubinstein binomial option pricing formula by considering Maxwell-Boltzmann statistics of the system of N distinguishable particles.展开更多
基金Acknowledgment M. Tahiri would like to thank the Alexander von Humboldt Stiftung for support and Prof. W. Rfihl (Department of Physics, Kaiserslautern University of Technology) for hospitality.
文摘We propose the supereonneetion formalism to construct the off-shell BRST-VSUSY superalgebra for D = 4 BF theories. The method is based on the natural introduction of physical fields as well as auxiliary fields via supereon- neetions and their associated supereurvatures defined on a superspaee. We also give a prescription to build the off-shell BRST-VSUSY exact quantum action.
基金The project supported by National Natural Science Foundation of China under Grant No. 10375038, the Natural Science Foundation of Beijing under Grant No. 1042004
文摘We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generallzed concurrence, from the monotonicity and convexity the entanglement of formafion for a class of high-dimensional mixed states has been calculated analytically,
基金The project supported by National Natural Science Foundation of China under Grant No. 60472017
文摘A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U (θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
文摘One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.
基金China Postdoctoral Science Foundation under Grant No.20060400878Natural Science Foundation of Hunan Province under Grant No.05JJ40007+1 种基金Postdoctoral Science Foundation of Hunan Province under Grant No.2007RS4015Key Science Research Foundation of Education Department of Hunan Province under Grant No.07A057
文摘We show that Wu-Yang theory of fully quantized four-wave mixing can be generalized to the six-wave mixing and derive the analytical solution of the coupled equations describing the quantum dynamics of six-wave mixing.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405009 and the Key Program Foundation of North China Electric Power University
文摘In this article, we study the pentaquark state Θ+(1540) with a (scalar) diquark-(pseudoscalar) diquarkantiquark type interpolating current in the framework of the QCD sum rules approach by including the contributions from the direct instantons. The numerical results indicate that the contributions from the direct instantons are very small and can be safely neglected.
基金The project supported by the Natural Science Foundation of Hubei Province of China under Grant No. 2003ABA004
文摘With the help of scattering-matrix method, the acoustic phonon ballistic transmission and the thermal conductivity are studied detailedly in a four-terminal structure. We find that the transmission coefficients and the reduced thermal conductance for each region sensitively depend on geometric parameters, and are of quantum character, but the reduced total thermal conductance for all regions seems independent of structure parameters when the temperature is not very low. Our results show that one can control the thermal conductivity for each region to match practical requirements in devices by adjusting the geometric parameters.
文摘Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential, Furthermore, making use of the b-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.
基金National Natural Science Foundation of China under Grant Nos.10675086 and KM200510028022National Key Basic Research Program of China under Grant No.2004CB318000
文摘We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMcriterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite andmultipartite systems.
文摘A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.
基金Supported by National Natural Science Foundation of China under Grant No. 61078011
文摘Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = O/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results.
基金Supported by the Nature Science Foundation of China under Grant Nos.10875003 and 10811240152the calculations are supported by CERNET High Performance Computing Center in China
文摘We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 90103018.
文摘Assuming that the recently θ+ and other exotic resonances belong to the pentaquark i0 of SU(3)I with J^P = 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory. The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, Ξ and N, we estimated the mass of Σ and the a terms.
文摘The problem on the set-theoretical solutions to the quantum Yang-Baxter equation was presented byDrinfel'd as a main unsolved problem in quantum group theory. The set-theoretical solutions are a natural extensionof the usual (linear) solutions. In this paper, we not only give a further study on some known set-theoretical solutions(the Venkov's solutions), but also find a new kind of set-theoretical solutions which have a geometric interpretation.Moreover, the new solutions lead to the metahomomorphisms in group theory.
基金The project supported by National Natural Science Foundation of China under Grant No. 10305001
文摘We show that the quantum world with non-local states and original statistics is statistically separable. According to relativistic dynamics, the super-luminal signal transmission is impossible. The present quantum theory is therefore consistent with the relativity and the causality.
文摘We extend basic entropies in the classical information theory to matrix ones in the quantum information theory. Then we show that relations between matrix entropies similar to the classical ones hold.
基金the Key Research Plan of Theoretical Physics and Cross Science
文摘We investigate the neutron star magnetic field by the relative mean-field theory, where the photon effective mass depending on baryon density of charged particles is nonzero. This field is produced by star itself, which is the function of baryon density. The result fits the observations.
文摘The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.
基金Supported by the President Foundation of Chinese Academy of Science
文摘By exposing deficiency of the usual superoperators that have no explicit operator-expression in quantuminformation theory we introduce thermo entangled state representation to endow each of these superoperators a definiteoperator-expression in an enlarged space in which one mode is a fictitious.This helps us to directly derive the role ofexponential of superoperators and the solutions of some master equations.
文摘In this paper, a quantum model for the binomial market in finance is proposed. We show that its risk-neutral world exhibits an intriguing structure as a disk in the unit ball of R^3, whose radius is a function of the risk-free interest rate with two thresholds which prevent arbitrage opportunities from this quantum market. Furthermore, from the quantum mechanical point of view we re-deduce the Cox-Ross-Rubinstein binomial option pricing formula by considering Maxwell-Boltzmann statistics of the system of N distinguishable particles.