We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase ...We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the field is independent of it during the time evolution of the system.展开更多
Following the quantum theory-based physical model of the human body,a new interpretation of the traditional Chinese medicine(TCM)principle of"Cunkou reads viscera"is presented.Then,a Gaussian pulse wave mode...Following the quantum theory-based physical model of the human body,a new interpretation of the traditional Chinese medicine(TCM)principle of"Cunkou reads viscera"is presented.Then,a Gaussian pulse wave model as a solution to the Schrodinger equation is shown to accurately describe 19 different pulse shapes,and to quantitatively capture the degree of YinYang attributes of 13 pulse shapes.Furthermore,the model suggests using pulse depth and strength as leading-order quantity and pulse shape as first-order quantity,to characterize the hierarchical resonance between the human body and the environment.The future pulse informatics will focus on determining an individual’s unique quantum human equilibrium state,and diagnose its health state according to the pulse deviation from its equilibrium state,to truly achieve the high level of TCM:"knowing the normal state and reaching the change".展开更多
We describe the Greenberger-Horne-Zeilinger (GHZ) paradox in the multi-mode Schroedinger cat states.We also show that the multi-mode cat states violate the Bell's inequality by an amount that grows exponentially w...We describe the Greenberger-Horne-Zeilinger (GHZ) paradox in the multi-mode Schroedinger cat states.We also show that the multi-mode cat states violate the Bell's inequality by an amount that grows exponentially with number of modes. The test of quantum nonlocality is based on parity measurement and displacement operation, which are experimentally feasible. We also describe a scheme for the generation of the cat states in cavity QED.展开更多
In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM)....In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM).It is assumed that there is a macro human order parameter(wave function),and its dynamics are governed by a macro potential field reflecting influences from heaven,earth,and society,and satisfy the generalized Schrodinger equation.This proposed model was applied in the study to interpret basic concepts of human body in TCM,with an aim to unfold the TCM development in the future.展开更多
We study that two atoms simultaneously interact with a single mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can emp...We study that two atoms simultaneously interact with a single mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the two-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in generating thermal entanglement. We also investigate the effect of the can obtain a strong and steady entanglement.展开更多
Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superd...Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.展开更多
We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the sec...We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the second order of the oscillating magnitude and they are uniformly valid for all time. We obtain the simple analytical expression for the energy density of the field which explicitly manifests that for a cavity vibrating at its -th eigenfrequency, traveling wave packets emerge in the finite part of the field energy density, and their amplitudes grow while their widths shrink in time, representing a large concentration of energy. The finite part of the field energy density originating from the oscillations is shown to be proportional to the factor .展开更多
A new scheme is proposed for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of two-mode cavity with ∧-type three-level atom, and it involves only a single measurement. ...A new scheme is proposed for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of two-mode cavity with ∧-type three-level atom, and it involves only a single measurement. In the scheme, the output state after swapping is exactly the maximally entangled state in principle, thus it is prior to the previous one, in which the output state is just approximate. Calculations indicate that our scheme is less influenced by an error.展开更多
We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground st...We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.展开更多
We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by ...We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate.展开更多
We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator.Highly distinctive and unique geometric pa...We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator.Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons.These patterns are in excellent agreement with a simulation using the Tavis-Cummings model,and allow us to readily identify different parameter regimes for both qubits in the detuning space.This method could potentially be an important component in the overall spectroscopic toolbox for quickly characterizing certain collective properties of multiple cavity quantum electrodynamics(QED)coupled qubits.展开更多
文摘We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the field is independent of it during the time evolution of the system.
基金the ENN Institute of Life Science and Technology for their financial support。
文摘Following the quantum theory-based physical model of the human body,a new interpretation of the traditional Chinese medicine(TCM)principle of"Cunkou reads viscera"is presented.Then,a Gaussian pulse wave model as a solution to the Schrodinger equation is shown to accurately describe 19 different pulse shapes,and to quantitatively capture the degree of YinYang attributes of 13 pulse shapes.Furthermore,the model suggests using pulse depth and strength as leading-order quantity and pulse shape as first-order quantity,to characterize the hierarchical resonance between the human body and the environment.The future pulse informatics will focus on determining an individual’s unique quantum human equilibrium state,and diagnose its health state according to the pulse deviation from its equilibrium state,to truly achieve the high level of TCM:"knowing the normal state and reaching the change".
文摘We describe the Greenberger-Horne-Zeilinger (GHZ) paradox in the multi-mode Schroedinger cat states.We also show that the multi-mode cat states violate the Bell's inequality by an amount that grows exponentially with number of modes. The test of quantum nonlocality is based on parity measurement and displacement operation, which are experimentally feasible. We also describe a scheme for the generation of the cat states in cavity QED.
基金the ENN Institute of Life Science and Technology for their financial support。
文摘In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM).It is assumed that there is a macro human order parameter(wave function),and its dynamics are governed by a macro potential field reflecting influences from heaven,earth,and society,and satisfy the generalized Schrodinger equation.This proposed model was applied in the study to interpret basic concepts of human body in TCM,with an aim to unfold the TCM development in the future.
文摘We study that two atoms simultaneously interact with a single mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the two-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in generating thermal entanglement. We also investigate the effect of the can obtain a strong and steady entanglement.
文摘Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.
文摘We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the second order of the oscillating magnitude and they are uniformly valid for all time. We obtain the simple analytical expression for the energy density of the field which explicitly manifests that for a cavity vibrating at its -th eigenfrequency, traveling wave packets emerge in the finite part of the field energy density, and their amplitudes grow while their widths shrink in time, representing a large concentration of energy. The finite part of the field energy density originating from the oscillations is shown to be proportional to the factor .
基金The project supported by National Natural Science Foundation of China under Grant No. 10674025 and the Natural Science Foundation of Fujian Province of China under Grant No. 2006J0235
文摘A new scheme is proposed for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of two-mode cavity with ∧-type three-level atom, and it involves only a single measurement. In the scheme, the output state after swapping is exactly the maximally entangled state in principle, thus it is prior to the previous one, in which the output state is just approximate. Calculations indicate that our scheme is less influenced by an error.
基金国家自然科学基金,Science Research Foundation ofEducation Office of Fujian Province of China,福州大学校科研和教改项目
文摘We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.
文摘We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate.
基金supported by the National Key Research and Development Program of China(2016YFA0301700)the National Natural Science Foundation of China(61922074,11674300,61674132,11625419 and 11804327)+2 种基金the Strategic Priority Research Program of the CAS(XDB24030601)the Anhui Initiative in Quantum Information Technologies(AHY080000)financial support by U.S.ARO through Grant No.W911NF1410346 and No.W911NF1710257。
文摘We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator.Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons.These patterns are in excellent agreement with a simulation using the Tavis-Cummings model,and allow us to readily identify different parameter regimes for both qubits in the detuning space.This method could potentially be an important component in the overall spectroscopic toolbox for quickly characterizing certain collective properties of multiple cavity quantum electrodynamics(QED)coupled qubits.