Reducing energy loss(V_(loss))is one of the most crucial challenges in organic photovoltaic cells.The V_(loss),determined by the differences between the optical band gap(E_(g))of the active layer material and the open...Reducing energy loss(V_(loss))is one of the most crucial challenges in organic photovoltaic cells.The V_(loss),determined by the differences between the optical band gap(E_(g))of the active layer material and the open-circuit voltage(V_(oc))of the device,is generally alleviated by lowering the energy difference between the lowest unoccupied molecular orbital(LUMO)and highest occupied molecular orbital(HOMO)level of the donor(D)and acceptor(A).In this work,we synthesized two A-π-D-π-A-type small-molecule donors(SMDs)SM-benzotriazole(BTz)-1 and SM-BTz-2 by introducing a BTzπ-bridge unit and terminal regulation.The BTzπ-bridge unit significantly lowers the HOMO energy level of SMDs,resulting in high V_(oc)and high mobility,achieving a balance of low energy loss(<0.5 eV)and high efficiency.Ultimately,the organic solar cells based on SM-BTz-2 as the donor and Y6 as the acceptor obtain a high V_(oc)of 0.91 V,J_(sc) of 22.8 mA cm^(−2),fill factor of 68%,and power conversion efficiency(PCE)of 14.12%,which is one of the highest efficiencies based on the SMDs with triazoleπ-bridges to date.What’s more,the BTzπ-bridge unit is a potential unit that can improve mobility and reduce energy loss.展开更多
Light absorption plays an important role in improving the power conversion efficiency(PCE)of quantum dot-sensitized solar cells(QDSSCs).In this study,a multifunctional long-persistence phosphor(LPP)layer was introduce...Light absorption plays an important role in improving the power conversion efficiency(PCE)of quantum dot-sensitized solar cells(QDSSCs).In this study,a multifunctional long-persistence phosphor(LPP)layer was introduced into the CdS/CdSe QDSSCs via a simple doctor blade method.The LPP layer can simultaneously improve the light harvesting and photo charge transfer in CdS/CdSe QDSSCs.As a result,their short-circuit current and corresponding PCE are effectively enhanced.The PCE can reach up to 5.07%,which is about 24%larger than that of the conventional CdS/CdSe QDSSCs without LPP layer.The solar cells can work in dark for a while due to the long-lasting fluorescence of the LPP layer.This research provides an effective way to improve the PCE of QDSSCs,and finds the possibility for all-weather QDSSCs.展开更多
For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivi...For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.展开更多
Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells(NFSMOSCs)due to the anisotropic conjugated backbones of both d...Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells(NFSMOSCs)due to the anisotropic conjugated backbones of both donor and acceptor.Therefore,developing a facile molecular design strategy to effectively regulate the crystalline properties of photoactive materials,and thus,enable the optimization of blend morphology is of vital importance.In this study,a new donor molecule B1,comprising phenyl-substituted benzodithiophene(BDT)central unit,exhibits strong interaction with the non-fullerene acceptor BO-4 Cl in comparison with its corresponding thiophene-substituted BDT-based material,BTR.As a result,the B1 is affected and induced from an edgeon to a face-on orientation by the acceptor,while the BTR and the acceptor behave individually for the similar molecular orientation in pristine and blend films according to grazing incidence wide angle X-ray scattering results.It means the donor-acceptor blend morphology is synergistically optimized in the B1 system,and the B1:BO-4 Cl-based devices achieve an outstanding power conversion efficiency(PCE)of 15.3%,further certified to be 15.1%by the National Institute of Metrology,China.Our results demonstrate a simple and effective strategy to improve the crystalline properties of the donor molecule as well as synergistically optimize the morphology of the all-small-molecule system,leading to the high-performance NFSM-OSCs.展开更多
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-Ti...A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.展开更多
基金the National Key Research and Development Program of China(2019YFA0705900)the National Natural Science Foundation of China(51820105003,21734008,61904181,52173188 and 52103243)+1 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB13)the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007).
文摘Reducing energy loss(V_(loss))is one of the most crucial challenges in organic photovoltaic cells.The V_(loss),determined by the differences between the optical band gap(E_(g))of the active layer material and the open-circuit voltage(V_(oc))of the device,is generally alleviated by lowering the energy difference between the lowest unoccupied molecular orbital(LUMO)and highest occupied molecular orbital(HOMO)level of the donor(D)and acceptor(A).In this work,we synthesized two A-π-D-π-A-type small-molecule donors(SMDs)SM-benzotriazole(BTz)-1 and SM-BTz-2 by introducing a BTzπ-bridge unit and terminal regulation.The BTzπ-bridge unit significantly lowers the HOMO energy level of SMDs,resulting in high V_(oc)and high mobility,achieving a balance of low energy loss(<0.5 eV)and high efficiency.Ultimately,the organic solar cells based on SM-BTz-2 as the donor and Y6 as the acceptor obtain a high V_(oc)of 0.91 V,J_(sc) of 22.8 mA cm^(−2),fill factor of 68%,and power conversion efficiency(PCE)of 14.12%,which is one of the highest efficiencies based on the SMDs with triazoleπ-bridges to date.What’s more,the BTzπ-bridge unit is a potential unit that can improve mobility and reduce energy loss.
基金financially supported by the National Natural Science Foundation of China (61376011, 51402141 and 61604086)Gansu Provincial Natural Science Foundation (17JR5RA198)+2 种基金the Fundamental Research Funds for the Central Universities (LZUJBKY-2018-119 and LZUJBKY-2018-CT08)Shenzhen Science and Technology Innovation Committee (JCYJ20170818155813437)the Key Areas Scientific and Technological Research Projects in Xinjiang Production and Construction Corps (2018AB004)
文摘Light absorption plays an important role in improving the power conversion efficiency(PCE)of quantum dot-sensitized solar cells(QDSSCs).In this study,a multifunctional long-persistence phosphor(LPP)layer was introduced into the CdS/CdSe QDSSCs via a simple doctor blade method.The LPP layer can simultaneously improve the light harvesting and photo charge transfer in CdS/CdSe QDSSCs.As a result,their short-circuit current and corresponding PCE are effectively enhanced.The PCE can reach up to 5.07%,which is about 24%larger than that of the conventional CdS/CdSe QDSSCs without LPP layer.The solar cells can work in dark for a while due to the long-lasting fluorescence of the LPP layer.This research provides an effective way to improve the PCE of QDSSCs,and finds the possibility for all-weather QDSSCs.
基金mostly supported by the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH006)+1 种基金the National Natural Science Foundation of China(61674141,51972300,21975245)the support from the Hundred Talents Program(Chinese Academy of Sciences)。
文摘For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.
基金financially supported by the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007)the National Natural Science Foundation of China(51873217,21734008,51703228,51961135103,51773047 and 51903239)。
文摘Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells(NFSMOSCs)due to the anisotropic conjugated backbones of both donor and acceptor.Therefore,developing a facile molecular design strategy to effectively regulate the crystalline properties of photoactive materials,and thus,enable the optimization of blend morphology is of vital importance.In this study,a new donor molecule B1,comprising phenyl-substituted benzodithiophene(BDT)central unit,exhibits strong interaction with the non-fullerene acceptor BO-4 Cl in comparison with its corresponding thiophene-substituted BDT-based material,BTR.As a result,the B1 is affected and induced from an edgeon to a face-on orientation by the acceptor,while the BTR and the acceptor behave individually for the similar molecular orientation in pristine and blend films according to grazing incidence wide angle X-ray scattering results.It means the donor-acceptor blend morphology is synergistically optimized in the B1 system,and the B1:BO-4 Cl-based devices achieve an outstanding power conversion efficiency(PCE)of 15.3%,further certified to be 15.1%by the National Institute of Metrology,China.Our results demonstrate a simple and effective strategy to improve the crystalline properties of the donor molecule as well as synergistically optimize the morphology of the all-small-molecule system,leading to the high-performance NFSM-OSCs.
基金supported by the National High Technology Research and Development Program of China (2009AA03Z217)the National Natural Science Foundation of China (90922028 and 51002053)
文摘A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.