This letter proposes two algorithms: a novel Quantum Genetic Algorithm (QGA)based on the improvement of Han's Genetic Quantum Algorithm (GQA) and a new Blind Source Separation (BSS) method based on QGA and Indepen...This letter proposes two algorithms: a novel Quantum Genetic Algorithm (QGA)based on the improvement of Han's Genetic Quantum Algorithm (GQA) and a new Blind Source Separation (BSS) method based on QGA and Independent Component Analysis (ICA). The simulation result shows that the efficiency of the new BSS method is obviously higher than that of the Conventional Genetic Algorithm (CGA).展开更多
An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards...An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards is from 1.7 to 2.2 GHz. Simulation results show that the proposed tuning technique can achieve good accuracy of impedance matching and load power. The reflection coefficient and VSWR obtained are also very close to their ideal values. Comparison of the proposed QGA tuning method with conventional genetic algorithm based tuning method is Moreover, the proposed method can be useful for software wireless bands. also given, which shows that the QGA tuning algorithm is much faster. defined radio systems using a single antenna for multiple mobile and展开更多
We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the thi...We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.展开更多
We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter ...We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.展开更多
基金Supported by the National Natural Science Foundation of China (No.60171029)
文摘This letter proposes two algorithms: a novel Quantum Genetic Algorithm (QGA)based on the improvement of Han's Genetic Quantum Algorithm (GQA) and a new Blind Source Separation (BSS) method based on QGA and Independent Component Analysis (ICA). The simulation result shows that the efficiency of the new BSS method is obviously higher than that of the Conventional Genetic Algorithm (CGA).
基金Projects(61102039, 51107034) supported by the National Natural Science Foundation of ChinaProject(2011FJ3080) supported by the Planned Science and Technology Project of Hunan Province ChinaProject supported by Fundamental Research Funds for the Central Universities, China
文摘An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards is from 1.7 to 2.2 GHz. Simulation results show that the proposed tuning technique can achieve good accuracy of impedance matching and load power. The reflection coefficient and VSWR obtained are also very close to their ideal values. Comparison of the proposed QGA tuning method with conventional genetic algorithm based tuning method is Moreover, the proposed method can be useful for software wireless bands. also given, which shows that the QGA tuning algorithm is much faster. defined radio systems using a single antenna for multiple mobile and
文摘We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.
文摘We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.