We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receive...We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.展开更多
In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum i...In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum information processing. We solve analytically a master equation in the Lindblad form with (L2,z, L3,z, L4,z)-type of noise in cavity Q, ED. A comparison between the two protocols are discussed.展开更多
We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to c...We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to control teleporting for an arbitrary m-qubit state against a collective-dephasing noise with nonmaximally entangled quantum channel,and the second is in teleporting the m-qubit state against the collective-rotation noise.The receiver can reconstruct the original state with an auxiliary qubit and the corresponding unitary operations if he cooperates with all the controllers.The scheme is optimal as the probability that the receiver reconstructs the original state equals to the entanglement of the quantum channel.展开更多
We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the cont...We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.展开更多
We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entangle...We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.展开更多
基金Supported by the National Basic Research Program of China (973 Program) under Grant No.2007CB311100the National Natural Science Foundation of China under Grant No.60873191+3 种基金the National High Technology Research and Development Program of China under Grant No.2006AA01Z419the Major Research plan of the National Natural Science Foundation of China under Grant No.90604023the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.KM200810005004the Scientific Research Foundation for the Youth of Beijing University of Technology under Grant No.97007016200701
文摘We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060357008+2 种基金Anhui Provincial Natural Science Foundation under Grant No. 070412060the Key Program of the Education Department of Anhui Province under Grant Nos.KJ2008A28ZC,KJ2008B265,KJ2009A048Z, 2010SQRLI53ZD, and 2008JQI183the Talent Foundation of Anhui University and Anhui Key Laboratory of Information Materials and Devices (Anhui University)
文摘In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum information processing. We solve analytically a master equation in the Lindblad form with (L2,z, L3,z, L4,z)-type of noise in cavity Q, ED. A comparison between the two protocols are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11047102)the Natural Science Foundation of Guangxi (Grant No.2011GxNSFB018062)+1 种基金the Educational Commission of Guangxi (Grant No.201012MS078)the Key Project of Chinese Ministry of Education(Grant No.211137)
文摘We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to control teleporting for an arbitrary m-qubit state against a collective-dephasing noise with nonmaximally entangled quantum channel,and the second is in teleporting the m-qubit state against the collective-rotation noise.The receiver can reconstruct the original state with an auxiliary qubit and the corresponding unitary operations if he cooperates with all the controllers.The scheme is optimal as the probability that the receiver reconstructs the original state equals to the entanglement of the quantum channel.
基金Supported by the Foundation for College Excellent Young Talents of Anhui Province under Grant Nos.2012SQRL205 and 2012SQRL206the Foundation for Academic Youth of Anhui Universitythe Higher Education Natural Science Foundation of Anhui Province under Grant No.KJ2010B383
文摘We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No.90818005)the National Natural Science Foundation of China (Grant Nos.61173187 and 61173-188)+1 种基金the Natural Science Foundation of Anhui Province (Grant No.11040606M141)the Research Program of Anhui Province Education Department (Grant No.KJ2010A009)
文摘We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.