The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresp...The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.展开更多
The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and tw...The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.展开更多
A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used....A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.展开更多
We theoretically investigate the optical absorption spectra and charge density by subjecting a GaAs quantum well to both an intense terahertz (THz)-frequency driving field and an optical pulse within the theory of den...We theoretically investigate the optical absorption spectra and charge density by subjecting a GaAs quantum well to both an intense terahertz (THz)-frequency driving field and an optical pulse within the theory of density matrix. In presence of a strong THz field, the optical transitions in quantum well subbands are altered by the THz field. The alteration has a direct impact on the optical absorption and the charge density. The excitonic peak splitting and THz optical sideband in the absorption spectra show up when changing the THz field intensity and/or frequency. The Autler-Towns splitting is a result from the THz nonlinear dynamics of confined excitons. On the other hand, the carrier charge density is created as wave packets formed by coherent superposition of several eigenstates. The charge density exhibitsquantum beats for short pulses and/or wider wells and is modulated by the THz field.展开更多
We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational...We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.展开更多
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic...In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.展开更多
Radiofrequency (rf) trapped ions are versatile candidates for a large panel of applications ranging from quantum information to the creation of cold molecules. Sample size can range from a single to 10^6 ions, and t...Radiofrequency (rf) trapped ions are versatile candidates for a large panel of applications ranging from quantum information to the creation of cold molecules. Sample size can range from a single to 10^6 ions, and the internal and external energy states of the atoms can be controlled with high precision. In the experiment, we focus on different protocols related to frequency metrology using rf trapped Ca.展开更多
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present pap...In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.展开更多
The decoherence process is analyzed for an open quantum system that is classically chaotic,with a classicallinear frequency entropy developed to measure the stability of classical motion,Investigation shows that the d...The decoherence process is analyzed for an open quantum system that is classically chaotic,with a classicallinear frequency entropy developed to measure the stability of classical motion,Investigation shows that the decoherencemeasured by the rate of quantum linear entropy production varies significantly with both the underlying classical orbitsand the classical linear frequency entropy.Such correspondence is also supported by the further investigation on theLoschmidt Echo.展开更多
The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage...The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. 011 the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.展开更多
In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cel...In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.展开更多
Rate control plays an important role in video coding. An algorithm is proposed by Tsai et al in which macroblock’s coding order is rearranged to improve the coding quality. However, the complexity is very high due to...Rate control plays an important role in video coding. An algorithm is proposed by Tsai et al in which macroblock’s coding order is rearranged to improve the coding quality. However, the complexity is very high due to the change of macroblock’s coding order. In this paper, a macroblocl-level rate control algorithm is proposed which recalculates the quantization parameter of each macroblock based on its significance. Simulation results show that the proposed algorithm not only achieves 0.1-0.6 dB in peak signal-to-noise ratio (PSNR) but also reduces 33%-55% total encoding time compared to Tsai’s algorithm.展开更多
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whos...The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1+ μα+α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.展开更多
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No. 20062040
文摘The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.
文摘The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.
文摘A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.
基金the National Fund for Distinguished Young Scholars of China under,国家自然科学基金,国家重点基础研究发展计划(973计划),上海市科委资助项目
文摘We theoretically investigate the optical absorption spectra and charge density by subjecting a GaAs quantum well to both an intense terahertz (THz)-frequency driving field and an optical pulse within the theory of density matrix. In presence of a strong THz field, the optical transitions in quantum well subbands are altered by the THz field. The alteration has a direct impact on the optical absorption and the charge density. The excitonic peak splitting and THz optical sideband in the absorption spectra show up when changing the THz field intensity and/or frequency. The Autler-Towns splitting is a result from the THz nonlinear dynamics of confined excitons. On the other hand, the carrier charge density is created as wave packets formed by coherent superposition of several eigenstates. The charge density exhibitsquantum beats for short pulses and/or wider wells and is modulated by the THz field.
基金The project supported by Fok Ying Tung Education Foundation under Grant No.81008+4 种基金National Natural Science Foundation of China under Grant No.60008003Natural Science Foundation of Fujian Province of China under Grant Nos.K20004 and F0110027the Funds from Fuzhou University
文摘We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.
文摘In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
文摘Radiofrequency (rf) trapped ions are versatile candidates for a large panel of applications ranging from quantum information to the creation of cold molecules. Sample size can range from a single to 10^6 ions, and the internal and external energy states of the atoms can be controlled with high precision. In the experiment, we focus on different protocols related to frequency metrology using rf trapped Ca.
基金Supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.
基金Supported by National Natural Science Foundation of China under Grant Nos.10375042 and 10875087
文摘The decoherence process is analyzed for an open quantum system that is classically chaotic,with a classicallinear frequency entropy developed to measure the stability of classical motion,Investigation shows that the decoherencemeasured by the rate of quantum linear entropy production varies significantly with both the underlying classical orbitsand the classical linear frequency entropy.Such correspondence is also supported by the further investigation on theLoschmidt Echo.
基金supported by the National Fundamental Research Program of China under Grant No.2006CB708612Zhejiang Funding Scheme to Young College Teachers
文摘The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. 011 the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.
文摘In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.
文摘Rate control plays an important role in video coding. An algorithm is proposed by Tsai et al in which macroblock’s coding order is rearranged to improve the coding quality. However, the complexity is very high due to the change of macroblock’s coding order. In this paper, a macroblocl-level rate control algorithm is proposed which recalculates the quantization parameter of each macroblock based on its significance. Simulation results show that the proposed algorithm not only achieves 0.1-0.6 dB in peak signal-to-noise ratio (PSNR) but also reduces 33%-55% total encoding time compared to Tsai’s algorithm.
文摘The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1+ μα+α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.