受量子理论启发,结合数学形态滤波器中的膨胀算子,提出合成量子启发结构元素(Compound quantum-inspired structuring element,CQSE),用于增强故障振动信号中的冲击响应成分。CQSE综合考虑了信号的局部特征和随机性,其高度能够跟随信号...受量子理论启发,结合数学形态滤波器中的膨胀算子,提出合成量子启发结构元素(Compound quantum-inspired structuring element,CQSE),用于增强故障振动信号中的冲击响应成分。CQSE综合考虑了信号的局部特征和随机性,其高度能够跟随信号的变化进行动态调整。首先,建立了量子启发结构元素(Quantum-inspired structuring element,QSE)的基本数学表达式。随后,采用峭度描述冲击响应信号的局部特征,并用于生成QSE在实数空间的单一形式(Single form in real space,SFRS)的高度;采用信号的归一化振动大小描述信号的随机性,并用于计算不同SFRS出现的量子概率。然后,结合量子概率,通过数学期望,对不同的SFRS进行合成,获得应用于膨胀算子的CQSE。最后,将CQSE应用于轴承故障诊断,有效地增强了故障信息。展开更多
文摘受量子理论启发,结合数学形态滤波器中的膨胀算子,提出合成量子启发结构元素(Compound quantum-inspired structuring element,CQSE),用于增强故障振动信号中的冲击响应成分。CQSE综合考虑了信号的局部特征和随机性,其高度能够跟随信号的变化进行动态调整。首先,建立了量子启发结构元素(Quantum-inspired structuring element,QSE)的基本数学表达式。随后,采用峭度描述冲击响应信号的局部特征,并用于生成QSE在实数空间的单一形式(Single form in real space,SFRS)的高度;采用信号的归一化振动大小描述信号的随机性,并用于计算不同SFRS出现的量子概率。然后,结合量子概率,通过数学期望,对不同的SFRS进行合成,获得应用于膨胀算子的CQSE。最后,将CQSE应用于轴承故障诊断,有效地增强了故障信息。