Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted wi...A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.展开更多
The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on th...The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.展开更多
This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are require...This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.展开更多
Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small...Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small). With increase of moisture content from 3 to 14% d.b., all the main dimensions (length, width and thickness), geometric mean diameter, porosity, true density, terminal velocity and static coefficient of friction increased while bulk density and rupture force for both sunflower seed and its kernel decreased for all size categories. The results showed that the highest value of static coefficient of friction for both seed and kernel was on the rubber surface, followed by plywood, polyethylene, galvanized iron, and finally aluminium surfaces. The seeds required less compressive force to dehull when loaded under the horizontal as compared to the vertical orientation. But for kernels, the trend was the opposite. Also, the compressive forces needed to initiate rupture of sunflower seed hulls were higher (47.1-94.72 N) than those required to rupture the kernel (8.5-13.4 N) in both orientations.展开更多
A statistical regression downscaling method was used to project future changes in precipitation over eastern China based on Phase 5 of the Coupled Model Intercomparison Project (CMIPS) the Representative Concentrati...A statistical regression downscaling method was used to project future changes in precipitation over eastern China based on Phase 5 of the Coupled Model Intercomparison Project (CMIPS) the Representative Concentration Pathway (RCP) scenarios simulated by the second spectral version of the Flexible Global Ocean- Atmosphere-Land System (FGOALS-s2) model. Our val- idation results show that the downscaled time series agree well with the present observed precipitation in terms of both the annual mean and the seasonal cycle. The regres- sion models built from the historical data are then used to generate future projections. The results show that the en- hanced land-sea thermal contrast strengthens both the subtropical anticyclone over the western Pacific and the east Asian summer monsoon flow under both RCPs. However, the trend of precipitation in response to warming over the 21 st century are different across eastern Chi- na under different RCPs. The area to the north of 32°N is likely to experience an increase in annual mean precipitation, while for the area between 23°N and 32°N mean precipitation is projected to decrease slightly over this century under RCP8.5. The change difference between scenarios mainly exists in the middle and late century. The land-sea thermal contrast and the associated east Asian summer monsoon flow are stronger, such that precipitation increases more, at higher latitudes under RCP8.5 compared to under RCP4.5. For the region south of 32°N, rainfall is projected to increase slightly under RCP4.5 but decrease under RCP8.5 in the late century. At the high resolution of 5 km, our statistically downscaled results for projected precipitation can be used to force hydrological models to project hydrological processes, which will be of great benefit to regional water planning and management.展开更多
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
文摘A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC06400,No.10 JCZDJC23300)
文摘The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.
基金supported by the Brain Korea 21 Project in 2010,the MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2010-(C1090-1021-0010))
文摘This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.
文摘Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small). With increase of moisture content from 3 to 14% d.b., all the main dimensions (length, width and thickness), geometric mean diameter, porosity, true density, terminal velocity and static coefficient of friction increased while bulk density and rupture force for both sunflower seed and its kernel decreased for all size categories. The results showed that the highest value of static coefficient of friction for both seed and kernel was on the rubber surface, followed by plywood, polyethylene, galvanized iron, and finally aluminium surfaces. The seeds required less compressive force to dehull when loaded under the horizontal as compared to the vertical orientation. But for kernels, the trend was the opposite. Also, the compressive forces needed to initiate rupture of sunflower seed hulls were higher (47.1-94.72 N) than those required to rupture the kernel (8.5-13.4 N) in both orientations.
基金financed by the National Basic Research Program of China (Grant No. 2010CB428502)the National Natural Science Foundation of China (Grant No. 40925015)
文摘A statistical regression downscaling method was used to project future changes in precipitation over eastern China based on Phase 5 of the Coupled Model Intercomparison Project (CMIPS) the Representative Concentration Pathway (RCP) scenarios simulated by the second spectral version of the Flexible Global Ocean- Atmosphere-Land System (FGOALS-s2) model. Our val- idation results show that the downscaled time series agree well with the present observed precipitation in terms of both the annual mean and the seasonal cycle. The regres- sion models built from the historical data are then used to generate future projections. The results show that the en- hanced land-sea thermal contrast strengthens both the subtropical anticyclone over the western Pacific and the east Asian summer monsoon flow under both RCPs. However, the trend of precipitation in response to warming over the 21 st century are different across eastern Chi- na under different RCPs. The area to the north of 32°N is likely to experience an increase in annual mean precipitation, while for the area between 23°N and 32°N mean precipitation is projected to decrease slightly over this century under RCP8.5. The change difference between scenarios mainly exists in the middle and late century. The land-sea thermal contrast and the associated east Asian summer monsoon flow are stronger, such that precipitation increases more, at higher latitudes under RCP8.5 compared to under RCP4.5. For the region south of 32°N, rainfall is projected to increase slightly under RCP4.5 but decrease under RCP8.5 in the late century. At the high resolution of 5 km, our statistically downscaled results for projected precipitation can be used to force hydrological models to project hydrological processes, which will be of great benefit to regional water planning and management.