[Objective] The aim was to explore the differences of jujube growth by intercropping with cotton and mono-cropping and to research effects of three irrigation models and quantity on jujube. [Method] The field experime...[Objective] The aim was to explore the differences of jujube growth by intercropping with cotton and mono-cropping and to research effects of three irrigation models and quantity on jujube. [Method] The field experiment with three factors and two levels were applied for the study in order to research the effect of all treatments with the yield, quality, bearing branch, flower, fruit diameter of jujube. [Result]With different irrigation patterns, the result of comparing the length of bearing branch was drip irrigation furrow irrigation micro spray, and the result of comparing the number of bearing branch, the bud number, the flower number, fruit diameter was the same, as follows: drip irrigation microjet irrigation furrow irrigation; the result of comparing the yield was drip irrigation furrow irrigation microjet irrigation with significant differences. With different irrigation quantities, high irrigation water quantity treatment was proved higher than low irrigation quantity treatment in every survey index. [Conclusion] The analysis indicates that drip irrigation, microjet irrigation and furrow irrigation increased the irrigation water quantity can significantly promote the growth and the yield of jujube and the effects of the three kinds of irrigation patterns are drip irrigation furrow irrigation microjet irrigation.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008...Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.展开更多
A field experiment was conducted to study the combined effect of nutrient andpest managements on soil biomass phospholipid contents, functional biodiversity and substrateutilization patterns of soil microbial populati...A field experiment was conducted to study the combined effect of nutrient andpest managements on soil biomass phospholipid contents, functional biodiversity and substrateutilization patterns of soil microbial populations in hybrid rice cropping system. The mineral N, Pand K fertilizers (as urea, calcium superphosphate and KCl respectively) were incorporated at 100,25, and 100 kg ha^(-1), respectively, and the various pesticides were applied at the recommendedrates. The results of the experiment demonstrated a decline in the microbial abundance and soilmicrobial biomass phospholipid contents with the advancement of crop growth, and significant changesin substrate utilization pattern of soil microbial population studied were observed with differentmanagement practices and at different growth stages. The principal component analysis (PCA) usingall 95-carbon sources (BIOLOG plates) gave good differentiation among the treatments, indicatingthat they have different patterns of carbon utilization under different habitats. The data showedthat diversity in microbial community continuously changed with the progression in crop stage,particularly at physiological maturity (PM) stage that was evident from the utilization of differentcarbon sources at various crop stages.展开更多
Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, tradit...Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.展开更多
The objective of this study is to clarify the effects of the thickness of soil dressing, the percolation patterns of plowsole and subsoil on reducing cadmium (Cd) uptake, and growth and yields of rice plants. Six st...The objective of this study is to clarify the effects of the thickness of soil dressing, the percolation patterns of plowsole and subsoil on reducing cadmium (Cd) uptake, and growth and yields of rice plants. Six stratified paddy field models, three patterns of soil dressing layer and two percolation patterns were used for the experiments. These models had 12.5 cm, 15.0 cm and 25.0 cm thickness of soil dressing layer and 15 cm thickness of underlying polluted soil layer, whose Cd concentration was about 1.81 mg·kg^-1. As a result Cd concentration of brown rice was lower than 0.04 mg·kg^-1 for the models with the close system percolation, while that in the open system percolation models were lower than 0.17 mg.kgl.When the thickness of soil dressing became lower, Cd concentrations with the open system percolation models showed significantly higher values than those of the other models (5% of significant level). But any significant difference was not found in the growth and yield among these models. As above mentioned, it was found that Cd concentration in rice grains was affected by the thickness of soil dressing and percolation patterns.展开更多
According to measuring mode (in-hopper,surface,transmitted and scattered neutron moisture gauge),this paper introduced the development and application of neutron moisture gauge in China since 1970s.
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen...The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.展开更多
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ...To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.展开更多
For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circ...For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circulation Model to the region of Peninsular Malaysia at fine grid resolution. This paper presents a desktop review of the state of climate change parameters, namely rainfall and river flow over the Peninsular Malaysia for the 2041-2050 projection period. Analysis of the results from the models shows there will be a substantial increase in mean monthly precipitation over the North East Coastal region from historical 259.5 mm to 281.5 mm, from 289.0 mm to 299.0 mm and 221.8 mm to 239.5 mm over Terengganu and Kelantan, respectively. Meanwhile, for river flow projection, it will be an expected increase in interannual and intraseasonal variability with increased hydrologic extremes (higher high flows, and lower low flows) at Kelantan, Pahang, Terengganu, and Kedah watersheds in the future.展开更多
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo...A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.展开更多
Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of...Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.展开更多
This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century ex...This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.展开更多
Based on the investigation of fiber influence on workability of self-compacting concrete (SCC), tests were carried out on two series of SCC rectangular simply supported beams, which were made of hooked steel fibers re...Based on the investigation of fiber influence on workability of self-compacting concrete (SCC), tests were carried out on two series of SCC rectangular simply supported beams, which were made of hooked steel fibers reinforced concrete with or without stirrups, subjected to four-point symmetrically placed vertical loads. The major test variables are steel fiber contents and stirrup ratios. The results indicate that the ultimate load significantly increases with the increase of fiber content; the addition of ...展开更多
First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather R...First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather Research and Forecasting(WRFV2.2),was used to simulate the heavy rainfall. Diagnostic analyses were done of moist potential vorticity(MPV)for its horizontal components(MPV2) and vertical components(MPV1)based on the simulation results of WRFV2.2 to identify the mechanism of the rainfall development.The results showed that the heavy rainfall occurred when there were high MPV1 in the upper levels and low MPV1 and high MPV2 in the lower levels.Disturbances of high MPV1 in the upper levels came from the southwest or northwest,those of low MPV1 in the lower levels came from the southwest,and those of high MPV2 came from the south.Disturbances of low MPV1 at low levels were the direct cause of convective instability.Enhanced vertical shear of meridional wind led to increased MPV2 at lower levels,strengthened baroclinicity,and active warm and wet flows.These distributions of MPV helped to trigger the release of unstable energy and produce warm-sector heavy rainfall.As it integrates the evolution of dynamic and thermal fields,MPV is able to reveal the development of this heavy rainfall effectively.展开更多
According to the Ringel-Green theorem,the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group.Furthermore,its Drinfeld double can be identified with the who...According to the Ringel-Green theorem,the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group.Furthermore,its Drinfeld double can be identified with the whole quantum group,in which the BGP-reflection functors coincide with Lusztig's symmetries.It is first asserted that the elements corresponding to exceptional modules lie in the integral generic composition algebra,hence in the integral form of the quantum group.Then it is proved that these elements lie in the crystal basis up to a sign.Eventually,it is shown that the sign can be removed by the geometric method.The results hold for any type of Cartan datum.展开更多
基金Xinjiang Water Resource Science and Technology Special Fund(2013T04,2013T05)Key Laboratory Construction Project of Xinjiang Academy of Agricultural Sciences(xjnkkl-2013-001)~~
文摘[Objective] The aim was to explore the differences of jujube growth by intercropping with cotton and mono-cropping and to research effects of three irrigation models and quantity on jujube. [Method] The field experiment with three factors and two levels were applied for the study in order to research the effect of all treatments with the yield, quality, bearing branch, flower, fruit diameter of jujube. [Result]With different irrigation patterns, the result of comparing the length of bearing branch was drip irrigation furrow irrigation micro spray, and the result of comparing the number of bearing branch, the bud number, the flower number, fruit diameter was the same, as follows: drip irrigation microjet irrigation furrow irrigation; the result of comparing the yield was drip irrigation furrow irrigation microjet irrigation with significant differences. With different irrigation quantities, high irrigation water quantity treatment was proved higher than low irrigation quantity treatment in every survey index. [Conclusion] The analysis indicates that drip irrigation, microjet irrigation and furrow irrigation increased the irrigation water quantity can significantly promote the growth and the yield of jujube and the effects of the three kinds of irrigation patterns are drip irrigation furrow irrigation microjet irrigation.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
基金the Finnish Cultural Foundation and Maa-ja vesitekniikan tuki r.y. (MVTT, 29188) for funding this researchsupported by Swedish VR, BECC and MERGE programs
文摘Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.
基金the National Natural Science Foundation of China.
文摘A field experiment was conducted to study the combined effect of nutrient andpest managements on soil biomass phospholipid contents, functional biodiversity and substrateutilization patterns of soil microbial populations in hybrid rice cropping system. The mineral N, Pand K fertilizers (as urea, calcium superphosphate and KCl respectively) were incorporated at 100,25, and 100 kg ha^(-1), respectively, and the various pesticides were applied at the recommendedrates. The results of the experiment demonstrated a decline in the microbial abundance and soilmicrobial biomass phospholipid contents with the advancement of crop growth, and significant changesin substrate utilization pattern of soil microbial population studied were observed with differentmanagement practices and at different growth stages. The principal component analysis (PCA) usingall 95-carbon sources (BIOLOG plates) gave good differentiation among the treatments, indicatingthat they have different patterns of carbon utilization under different habitats. The data showedthat diversity in microbial community continuously changed with the progression in crop stage,particularly at physiological maturity (PM) stage that was evident from the utilization of differentcarbon sources at various crop stages.
基金funded by Natural Science Foundation of China (Grants Nos. 51279144 and 11432015)Chinese Academy of Sciences (Grant No. KZZD-EW-05-01-03)
文摘Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.
文摘The objective of this study is to clarify the effects of the thickness of soil dressing, the percolation patterns of plowsole and subsoil on reducing cadmium (Cd) uptake, and growth and yields of rice plants. Six stratified paddy field models, three patterns of soil dressing layer and two percolation patterns were used for the experiments. These models had 12.5 cm, 15.0 cm and 25.0 cm thickness of soil dressing layer and 15 cm thickness of underlying polluted soil layer, whose Cd concentration was about 1.81 mg·kg^-1. As a result Cd concentration of brown rice was lower than 0.04 mg·kg^-1 for the models with the close system percolation, while that in the open system percolation models were lower than 0.17 mg.kgl.When the thickness of soil dressing became lower, Cd concentrations with the open system percolation models showed significantly higher values than those of the other models (5% of significant level). But any significant difference was not found in the growth and yield among these models. As above mentioned, it was found that Cd concentration in rice grains was affected by the thickness of soil dressing and percolation patterns.
文摘According to measuring mode (in-hopper,surface,transmitted and scattered neutron moisture gauge),this paper introduced the development and application of neutron moisture gauge in China since 1970s.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41275078)
文摘The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.
基金The National Natural Science Foundation of China(No.51979040)。
文摘To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.
文摘For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circulation Model to the region of Peninsular Malaysia at fine grid resolution. This paper presents a desktop review of the state of climate change parameters, namely rainfall and river flow over the Peninsular Malaysia for the 2041-2050 projection period. Analysis of the results from the models shows there will be a substantial increase in mean monthly precipitation over the North East Coastal region from historical 259.5 mm to 281.5 mm, from 289.0 mm to 299.0 mm and 221.8 mm to 239.5 mm over Terengganu and Kelantan, respectively. Meanwhile, for river flow projection, it will be an expected increase in interannual and intraseasonal variability with increased hydrologic extremes (higher high flows, and lower low flows) at Kelantan, Pahang, Terengganu, and Kedah watersheds in the future.
基金National Natural Science Foundation of China (40875067, 40675040)Knowledge Innovation Program of the Chinese Academy of Sciences (IAP09306)National Basic Research Program of China. (2006CB400505)
文摘A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.
基金supported by the National Natural Science Foundation of China(2009CB421407 and 2010CB 950501)
文摘Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.
基金supported financially by the National Basic Research Program of China (Grant No.2010CB950403)the National Natural Science Foundation of China (Major Research,Grant No. 40890151+2 种基金Grant Nos.40921160379 and 41105047)supported by the National Science Council (Grant No. NSC98-2745-M-001-005-MY3)supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy
文摘This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.
基金Supported by National Natural Science Foundation of China (No. 50578026)
文摘Based on the investigation of fiber influence on workability of self-compacting concrete (SCC), tests were carried out on two series of SCC rectangular simply supported beams, which were made of hooked steel fibers reinforced concrete with or without stirrups, subjected to four-point symmetrically placed vertical loads. The major test variables are steel fiber contents and stirrup ratios. The results indicate that the ultimate load significantly increases with the increase of fiber content; the addition of ...
基金Open Foundation of the Key Laboratory on Ocean-Atmospheric Chemistry and Global Change from State Oceanological Administration(GCMAC0809)Natural Science Foundation of China(40775068)Development Planning for Key Foundamental Research of China(2010CB428504))
文摘First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather Research and Forecasting(WRFV2.2),was used to simulate the heavy rainfall. Diagnostic analyses were done of moist potential vorticity(MPV)for its horizontal components(MPV2) and vertical components(MPV1)based on the simulation results of WRFV2.2 to identify the mechanism of the rainfall development.The results showed that the heavy rainfall occurred when there were high MPV1 in the upper levels and low MPV1 and high MPV2 in the lower levels.Disturbances of high MPV1 in the upper levels came from the southwest or northwest,those of low MPV1 in the lower levels came from the southwest,and those of high MPV2 came from the south.Disturbances of low MPV1 at low levels were the direct cause of convective instability.Enhanced vertical shear of meridional wind led to increased MPV2 at lower levels,strengthened baroclinicity,and active warm and wet flows.These distributions of MPV helped to trigger the release of unstable energy and produce warm-sector heavy rainfall.As it integrates the evolution of dynamic and thermal fields,MPV is able to reveal the development of this heavy rainfall effectively.
基金supported by the National Natural Science Foundation of China (No. 10631010) the NationalKey Basic Research Programme of China (No. 2006CB805905)
文摘According to the Ringel-Green theorem,the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group.Furthermore,its Drinfeld double can be identified with the whole quantum group,in which the BGP-reflection functors coincide with Lusztig's symmetries.It is first asserted that the elements corresponding to exceptional modules lie in the integral generic composition algebra,hence in the integral form of the quantum group.Then it is proved that these elements lie in the crystal basis up to a sign.Eventually,it is shown that the sign can be removed by the geometric method.The results hold for any type of Cartan datum.