针对移动外辐射源跟踪问题,提出一种融合到达角(Angle of Arrival,AOA)与到达时间差(Time Difference of Arrival,TDOA)观测量的量测转换Kalman滤波(Converted Measurement Kalman Filter,CMKF)算法。首先,采用了一种考虑了传感器位置...针对移动外辐射源跟踪问题,提出一种融合到达角(Angle of Arrival,AOA)与到达时间差(Time Difference of Arrival,TDOA)观测量的量测转换Kalman滤波(Converted Measurement Kalman Filter,CMKF)算法。首先,采用了一种考虑了传感器位置偏差影响的无源定位算法作为转换非线性的AOA与TDOA观测量至笛卡尔坐标系下观测量的方法,并证明了当AOA与TDOA的测量噪声以及传感器位置偏差都服从高斯分布且噪声强度不大时,该量测转换方法的位置转换误差能达到克拉美罗(Cramér-Rao Lower Bound,CRLB)界;其次,在量测转换的基础上构建了关于移动外辐射源的线性状态空间模型,将非线性的目标跟踪问题转化为线性滤波问题,并最终使用标准Kalman滤波器实时跟踪移动外辐射源位置。仿真结果不仅验证了量测转换精度与理论分析结论吻合,还表明了所提CMKF算法的跟踪精度同时优于扩展Kalman滤波器、无迹滤波器以及粒子滤波器。展开更多
最佳线性无偏估计(BLUE,Best Linear Unbiased Estimation)滤波用于雷达目标跟踪时,有计算量小,置信度高等优点.但是当互斜距测量误差较大时,BLUE滤波会产生非高斯转换量测,导致跟踪精度降低.为解决此问题,对其量测转换模型进行修正:通...最佳线性无偏估计(BLUE,Best Linear Unbiased Estimation)滤波用于雷达目标跟踪时,有计算量小,置信度高等优点.但是当互斜距测量误差较大时,BLUE滤波会产生非高斯转换量测,导致跟踪精度降低.为解决此问题,对其量测转换模型进行修正:通过引入方位预测,减小方位误差三角函数的非线性影响,得到准高斯分布的转换量测.分析视线坐标系下BLUE滤波的性能,推导引入方位预测的条件,给出改进算法工作流程.推导三坐标雷达下的滤波模型参数,提出转换量测高斯化水平的评估指标并仿真证明:改进算法的转换量测更逼近高斯分布,因此跟踪性能更好,而计算量只有轻微增加.本算法思想同样适用于其他非线性误差较大的场合,对解决类似问题有借鉴意义.展开更多
文摘最佳线性无偏估计(BLUE,Best Linear Unbiased Estimation)滤波用于雷达目标跟踪时,有计算量小,置信度高等优点.但是当互斜距测量误差较大时,BLUE滤波会产生非高斯转换量测,导致跟踪精度降低.为解决此问题,对其量测转换模型进行修正:通过引入方位预测,减小方位误差三角函数的非线性影响,得到准高斯分布的转换量测.分析视线坐标系下BLUE滤波的性能,推导引入方位预测的条件,给出改进算法工作流程.推导三坐标雷达下的滤波模型参数,提出转换量测高斯化水平的评估指标并仿真证明:改进算法的转换量测更逼近高斯分布,因此跟踪性能更好,而计算量只有轻微增加.本算法思想同样适用于其他非线性误差较大的场合,对解决类似问题有借鉴意义.