the Sishanlinchang gold-silver deposit is mainly composed of gold-quartz vein type ores. It has many kinds of sulfides and gold in high grade. The Au has a close correlation with As, Pb, Ag and Cu. Geochemi- cally, th...the Sishanlinchang gold-silver deposit is mainly composed of gold-quartz vein type ores. It has many kinds of sulfides and gold in high grade. The Au has a close correlation with As, Pb, Ag and Cu. Geochemi- cally, the deposit is characterized by relatively enrichment in LREE with moderate or lower Eu negative anoma- ly. Sulfur isotopes appear as single and deep source, and lead isotopes indicate the Pb is from the earth's mantle and crust, which mainly are orogenic belt Pb, the ore-forming fluid has a temperature of 215~C -350~C and a low salinity with a mixture of characteristics of magmaitc hydrothermal and meteoric water. The ore-forming age is 111. 1 - 111.4 Ma. The deposit is formed in mineralization and precipitation of metallogenie materials caused by the mixture of the magmatic hydrothermal fluid and meteoric water.展开更多
Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite...Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.展开更多
Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in ...Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.展开更多
文摘the Sishanlinchang gold-silver deposit is mainly composed of gold-quartz vein type ores. It has many kinds of sulfides and gold in high grade. The Au has a close correlation with As, Pb, Ag and Cu. Geochemi- cally, the deposit is characterized by relatively enrichment in LREE with moderate or lower Eu negative anoma- ly. Sulfur isotopes appear as single and deep source, and lead isotopes indicate the Pb is from the earth's mantle and crust, which mainly are orogenic belt Pb, the ore-forming fluid has a temperature of 215~C -350~C and a low salinity with a mixture of characteristics of magmaitc hydrothermal and meteoric water. The ore-forming age is 111. 1 - 111.4 Ma. The deposit is formed in mineralization and precipitation of metallogenie materials caused by the mixture of the magmatic hydrothermal fluid and meteoric water.
基金Financial support from the Natural Sciences and Engineering Research Council through its Cooperative Research & Development grants program
文摘Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0600106)the National Natural Science Foundation of China(Grant Nos.41402047&41373046)
文摘Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.