The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filifor...The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filiform corrosion testing,respectively.It is found that the grain refinement,redistribution of alloying elements,and elements segregation at grain boundaries are evident within the near-surface region on the machined AA7150 aluminium alloy.The corrosion susceptibility of machining introduced near-surface deformed layer is significantly improved caused by the modified microstructure associated with severe deformation.Filiform corrosion resistance on the machined surface is obviously decreased,due to the surface roughness associated with machining tracks and the presence of the electrochemically more active near-surface deformed layer introduced by machining.展开更多
TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. ...TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. The joints were evaluated by mechanical test and microstructural analyses. The welding procedure using hot fiUer wire (400 ℃ ) significantly increases strength stability by 71% and average value of tensile strength by 30. 8 % of the joints, compared with cold wire. The research of microstructures in interfaces and welded seams reveals that using 400 ℃ hot filler wire can decrease the thickness of intermetallic compounds ( IMCs ) from 6 to 3.5 txm approximately, which is the main reason of mechanical property improvement.展开更多
基金Project(EP/R001715/1)supported by the UK Engineering and Physical Sciences Research Council。
文摘The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filiform corrosion testing,respectively.It is found that the grain refinement,redistribution of alloying elements,and elements segregation at grain boundaries are evident within the near-surface region on the machined AA7150 aluminium alloy.The corrosion susceptibility of machining introduced near-surface deformed layer is significantly improved caused by the modified microstructure associated with severe deformation.Filiform corrosion resistance on the machined surface is obviously decreased,due to the surface roughness associated with machining tracks and the presence of the electrochemically more active near-surface deformed layer introduced by machining.
基金Acknowledgement The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033 ).
文摘TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. The joints were evaluated by mechanical test and microstructural analyses. The welding procedure using hot fiUer wire (400 ℃ ) significantly increases strength stability by 71% and average value of tensile strength by 30. 8 % of the joints, compared with cold wire. The research of microstructures in interfaces and welded seams reveals that using 400 ℃ hot filler wire can decrease the thickness of intermetallic compounds ( IMCs ) from 6 to 3.5 txm approximately, which is the main reason of mechanical property improvement.