Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative ...Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative calculations were made on each atomic site occupation probability (SOP) in L12-Ni3 (Al1?xFex), so as to find out the dynamic response law. The result of the study shows that, with the increase of Fe content, the Fe atom preferentially occupies the B sites (corner sites of FCC) with its SOP value being increased gradually, and the SOP of the Al atom on the B sites is greatly decreased. Meanwhile, AlNi and FeNi anti-sites form in the precipitation of L12 phase. Moreover, with the increase of Fe content, the formation of AlNi and FeNi anti-sites becomes much easier. In addition, it has been found that the instantaneous dynamic evolution of the atomic SOP is completed at the early stage of the growth of L12 phases.展开更多
The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and m...The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.展开更多
Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles a...Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.展开更多
In 2007, the U.S. subprime crisis -induced global financial crisis swept across the world rapidly, triggering a reflection of Governments on financial regulatory philosophy and systems, it also brought the shadow bank...In 2007, the U.S. subprime crisis -induced global financial crisis swept across the world rapidly, triggering a reflection of Governments on financial regulatory philosophy and systems, it also brought the shadow banking finance in front of the majority of people, it has become the focus of attention. Various management measures have been taken around the shadow banking, and it has brought great volatility to currency and financial markets, and it also highlights the plight of Chinese shadow banking supervision. Therefore, this article briefly analyzes the mechanism of the Financial Times in the Chinese style shadow banking, and makes several regulatory proposals, avoiding low risk of shadow banking at the greatest degree.展开更多
We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field i...We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectricsl where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived using all the vacuum mode functions, which include the contribution of the 'evanescent modes'. Only in the case of the perfect, metallic plates will the evanescent modes become unimportant.展开更多
Utilizing the quantum statistical method and applying the new state density equation motivated by generalized uncertainty principle in quantum gravitaty, we avoid the difficulty in solving wave equation and directly c...Utilizing the quantum statistical method and applying the new state density equation motivated by generalized uncertainty principle in quantum gravitaty, we avoid the difficulty in solving wave equation and directly calculate the partition function of bosonic and fermionic field on the background of rotating and charged black string. Then near the cosmological horizon, entropies of bosonic and fermionic field are calculated on the background of black string. When constant A introduced in generalized uncertainty principle takes a proper value, we derive Bekenstein- Hawking entropy and the correction value corresponding cosmologicaJ horizon on the background of rotating and charged black string. Because we use the new state density equation, in our calculation there are not divergent term and small mass approximation in the original brick-wall method. From the view of quantum statistic mechanics, the correction value to Bekenstein-Hawking entropy of the black string is derived. It makes people deeply understand the correction value to the entropy of the black string cosmological horizon in non-spherical coordinate spacetime.展开更多
This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the li...This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.展开更多
Based on the phase field theory, the phase precipitation sequence of Ni75A110Cr15 alloy and the free energy of each phase were studied. Moreover, the interatomic potentials of Llo phase, L12 phase and DO22 phase chang...Based on the phase field theory, the phase precipitation sequence of Ni75A110Cr15 alloy and the free energy of each phase were studied. Moreover, the interatomic potentials of Llo phase, L12 phase and DO22 phase changing with temperature and concen- trations were computed through utilizing the interatomic potentials equations induced by Khachaturyan's relational equations between the interatomic potentials and the long-range order (LRO) parameters. Results match preceding work and demonstrate that the phase precipitation sequence of Ni75AlloCr15 alloy is the disordered phase -L10 pre-precipitation phase -L12 equilibrium phase -L12+DO22 equilibrium phase. Free energies of Llo pre-precipitation phase are higher and interatomic potentials are smaller than those of L12 equilibrium phase; therefore, it is concluded that Llo phase is unstable, and phase transformation would occur to L12 which is more stable; L12 phase precipitates earlier than DO22 phase because L12's interaction potentials are larger than DO22's.展开更多
A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Bene...A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Beneath the modification zones with common uniform α-plate structures(UPS), a layer of unreported bimodal α-plate structures(BPS) featured by coarse(submicron)plates forming multiple cores surrounded by dense fine(nanoscale) plates was found. Presence of such BPS is attributed to non-equilibrium thermodynamic conditions induced by the pulsed laser treatments. Limited diffusion of Nb due to the short pulse during laser heating allows β phases with distinctly different Nb contents to be presented: Nb-enriched prior β films and Nb-depleted β phases, transforming into the fine and the coarse plates during cooling, respectively. Orientation analyses show that both types of plates in the BPS are aroused essentially from a single β orientation, suggesting epitaxial growth of the Nb-depletedβ phases from the preexisting β films.展开更多
Single-event charge collection is controlled by drift, diffusion and the bipolar effect. Previous work has established that the bipolar effect is significant in the p-type metal-oxide-semiconductor field-effect transi...Single-event charge collection is controlled by drift, diffusion and the bipolar effect. Previous work has established that the bipolar effect is significant in the p-type metal-oxide-semiconductor field-effect transistor(PMOS) in 90 nm technology and above. However, the consequences of the bipolar effect on P-hit single-event transients have still not completely been characterized in 65 nm technology. In this paper, characterization of the consequences of the bipolar effect on P-hit single-event transients is performed by heavy ion experiments in both 65 nm twin-well and triple-well complementary metal-oxide-semiconductor(CMOS) technologies. Two inverter chains with clever layout structures are explored for the characterization. Ge(linear energy transfer(LET) = 37.4 Me V cm^2/mg) and Ti(LET = 22.2 Me V cm^2/mg) particles are also employed. The experimental results show that with Ge(Ti) exposure, the average pulse reduction is 49 ps(45 ps) in triple-well CMOS technology and 42 ps(32 ps) in twin-well CMOS technology when the bipolar effect is efficiently mitigated. This characterization will provide an important reference for radiation hardening integrated circuit design.展开更多
基金Project(2013011014-1)supported by the Natural Science Funds of Shanxi Province,ChinaProject(2009021028)supported by Science and Technique Foundation for Young Scholars of Shanxi Province,China
文摘Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative calculations were made on each atomic site occupation probability (SOP) in L12-Ni3 (Al1?xFex), so as to find out the dynamic response law. The result of the study shows that, with the increase of Fe content, the Fe atom preferentially occupies the B sites (corner sites of FCC) with its SOP value being increased gradually, and the SOP of the Al atom on the B sites is greatly decreased. Meanwhile, AlNi and FeNi anti-sites form in the precipitation of L12 phase. Moreover, with the increase of Fe content, the formation of AlNi and FeNi anti-sites becomes much easier. In addition, it has been found that the instantaneous dynamic evolution of the atomic SOP is completed at the early stage of the growth of L12 phases.
基金Project(51674144)supported by the National Natural Science Foundation of ChinaProject(KJLD14016)supported by the Luodi Research Plan of Jiangxi Educational Department,China+1 种基金Projects(20122BAB206021,20133ACB21003)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(20122BCB23001)supported by the Young Scientists Cultivating Program of Jiangxi Province,China
文摘The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.
基金Project(2007AA03Z548) supported by High-Tech Research and Development Program of ChinaProject(50971066) supported by the National Natural Science Foundation of ChinaProject(1283000349) supported by the Jiangsu University Research Fund for Advanced Scholars,China
文摘Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.
文摘In 2007, the U.S. subprime crisis -induced global financial crisis swept across the world rapidly, triggering a reflection of Governments on financial regulatory philosophy and systems, it also brought the shadow banking finance in front of the majority of people, it has become the focus of attention. Various management measures have been taken around the shadow banking, and it has brought great volatility to currency and financial markets, and it also highlights the plight of Chinese shadow banking supervision. Therefore, this article briefly analyzes the mechanism of the Financial Times in the Chinese style shadow banking, and makes several regulatory proposals, avoiding low risk of shadow banking at the greatest degree.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2003CB716300 and National Natural Science Foundation of China under Grant No. 10121503
文摘We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectricsl where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived using all the vacuum mode functions, which include the contribution of the 'evanescent modes'. Only in the case of the perfect, metallic plates will the evanescent modes become unimportant.
基金Supported by the Shanxi Natural Science Foundation of China under Grant No.2006011012the Doctoral Scientific Research Starting Foundation of Shanxi Datong University
文摘Utilizing the quantum statistical method and applying the new state density equation motivated by generalized uncertainty principle in quantum gravitaty, we avoid the difficulty in solving wave equation and directly calculate the partition function of bosonic and fermionic field on the background of rotating and charged black string. Then near the cosmological horizon, entropies of bosonic and fermionic field are calculated on the background of black string. When constant A introduced in generalized uncertainty principle takes a proper value, we derive Bekenstein- Hawking entropy and the correction value corresponding cosmologicaJ horizon on the background of rotating and charged black string. Because we use the new state density equation, in our calculation there are not divergent term and small mass approximation in the original brick-wall method. From the view of quantum statistic mechanics, the correction value to Bekenstein-Hawking entropy of the black string is derived. It makes people deeply understand the correction value to the entropy of the black string cosmological horizon in non-spherical coordinate spacetime.
文摘This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10902086, 51075335 and 50875217)the Basic Re-search Fund of the Northwestern Polytechnical University (Grant No. JC201005)the Doctoral Foundation of Northwestern Polytechnical University (Grant No. CX201103)
文摘Based on the phase field theory, the phase precipitation sequence of Ni75A110Cr15 alloy and the free energy of each phase were studied. Moreover, the interatomic potentials of Llo phase, L12 phase and DO22 phase changing with temperature and concen- trations were computed through utilizing the interatomic potentials equations induced by Khachaturyan's relational equations between the interatomic potentials and the long-range order (LRO) parameters. Results match preceding work and demonstrate that the phase precipitation sequence of Ni75AlloCr15 alloy is the disordered phase -L10 pre-precipitation phase -L12 equilibrium phase -L12+DO22 equilibrium phase. Free energies of Llo pre-precipitation phase are higher and interatomic potentials are smaller than those of L12 equilibrium phase; therefore, it is concluded that Llo phase is unstable, and phase transformation would occur to L12 which is more stable; L12 phase precipitates earlier than DO22 phase because L12's interaction potentials are larger than DO22's.
基金supported by the National Natural Science Foundation of China(Grant Nos.51401040&51401039)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1500901)+1 种基金the Natural Science Foundation of Hebei Province of China(Grant No.E2015203250)the Young Teachers Program of Yanshan University(Grant No.14LGA005)
文摘A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Beneath the modification zones with common uniform α-plate structures(UPS), a layer of unreported bimodal α-plate structures(BPS) featured by coarse(submicron)plates forming multiple cores surrounded by dense fine(nanoscale) plates was found. Presence of such BPS is attributed to non-equilibrium thermodynamic conditions induced by the pulsed laser treatments. Limited diffusion of Nb due to the short pulse during laser heating allows β phases with distinctly different Nb contents to be presented: Nb-enriched prior β films and Nb-depleted β phases, transforming into the fine and the coarse plates during cooling, respectively. Orientation analyses show that both types of plates in the BPS are aroused essentially from a single β orientation, suggesting epitaxial growth of the Nb-depletedβ phases from the preexisting β films.
基金supported by the National Natural Science Foundation of China(Grant No.61504169)the Preliminary Research Program of National University of Defense Technology of China(Grant No.0100066314001)
文摘Single-event charge collection is controlled by drift, diffusion and the bipolar effect. Previous work has established that the bipolar effect is significant in the p-type metal-oxide-semiconductor field-effect transistor(PMOS) in 90 nm technology and above. However, the consequences of the bipolar effect on P-hit single-event transients have still not completely been characterized in 65 nm technology. In this paper, characterization of the consequences of the bipolar effect on P-hit single-event transients is performed by heavy ion experiments in both 65 nm twin-well and triple-well complementary metal-oxide-semiconductor(CMOS) technologies. Two inverter chains with clever layout structures are explored for the characterization. Ge(linear energy transfer(LET) = 37.4 Me V cm^2/mg) and Ti(LET = 22.2 Me V cm^2/mg) particles are also employed. The experimental results show that with Ge(Ti) exposure, the average pulse reduction is 49 ps(45 ps) in triple-well CMOS technology and 42 ps(32 ps) in twin-well CMOS technology when the bipolar effect is efficiently mitigated. This characterization will provide an important reference for radiation hardening integrated circuit design.