Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species for...Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.展开更多
Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)...Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors.展开更多
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strai...The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1.展开更多
A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures...A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.展开更多
The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s...The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.展开更多
Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization a...Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization at 1227 K for 24 h. Microstructure and phase analysis indicated that TiC reinforcements and Ti-C solid solutions were introduced after solid carburization. Moreover, the volume fraction of equiaxedα-Ti phase in diffusion layer decreased obviously with increasing sample depth. Hardness testing results indicated that both the carburized surfaces performed significant improvement of about 100% in micro-hardness compared with untreated materials. The variation of carbon contents with increasing sample depth resulted in a hardened layer of 300 μm in the carburized samples. Meanwhile, slight influence on the internal microstructure and hardness indicated that solid carburization was an effective method in strengthening the surface of titanium alloy and titanium matrix composite.展开更多
To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy me...To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.展开更多
Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites wa...Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites was characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The selected area electron diffraction (SAED) for the interface was investigated. The elements at the interface were scanned by energy dispersive spectroscopy (EDS) and the EDS mapping was also obtained. X-ray diffraction (XRD) analysis was carried out for the composites fabricated by 1 pass, 2 passes and 4 passes ECAP-T. According to the XRD analysis, the influences of ECAP-T pass on the Bragg angle and interplanar spacing for AI crystalline planes were studied. The results show that after ECAP-T, the interface between A1 and SiC within the composites is a belt of amorphous SiO2 containing a trace of A1, Si and C which diffused from the matrix and the reinforcement. With the growing ECAP-T pass, the Bragg angle decreases and interplanar spacing increases for A1 crystalline planes, due to the accumulated lattice strain. The increasing lattice strain of A1 grains also boosts the density of the dislocation within A1 grains.展开更多
A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The ...A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The results indicated that vacuum stirring/casting, B4C/Mg feeding and ingots cooling were essential to the successful fabrication of AA6061-31%B4C composite. Chemical erosion examination verified the designed B4 C content; X-ray fluorescence spectrometer(XFS) showed the chemical composition of Mg and Si in the matrix conformed to industry standards; scanning electronic microscope(SEM) and X-ray diffraction(XRD) revealed that B4 C particles were evenly distributed in the composites with well dispersed Mg2Si precipitates. Tensile testing results showed that the AA6061-31%B4C composite had a tensile strength of 340 MPa, improved by 112.5% compared with AA1100-31%B4C composite, which is attributed to the enhanced strength of the matrix alloy.展开更多
A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy...A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.展开更多
Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemic...Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.展开更多
SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an ...SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.展开更多
文摘Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.
基金National Natural Science Foundation of China(T2125008,92263108,92163203,52102292,52003198)Shanghai Rising-Star Program(23QA1409300)Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096)。
文摘Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors.
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
基金Project(51371077)supported by the National Natural Science Foundation of China
文摘The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1.
基金Project (50975093) supported by the National Natural Science Foundation of ChinaProject (2012ZP0006) supported by the Fundamental Research Funds for the Central Universities,China
文摘A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.
基金Projects(51371114,51501112,51504151)supported by the National Natural Science Foundation of ChinaProject(2012CB619600)supported by the National Basic Research Program of ChinaProject(SAMC14-JS-15-047)supported by the National Engineering and Research Center for Commercial Aircraft Manufacturing,China
文摘Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization at 1227 K for 24 h. Microstructure and phase analysis indicated that TiC reinforcements and Ti-C solid solutions were introduced after solid carburization. Moreover, the volume fraction of equiaxedα-Ti phase in diffusion layer decreased obviously with increasing sample depth. Hardness testing results indicated that both the carburized surfaces performed significant improvement of about 100% in micro-hardness compared with untreated materials. The variation of carbon contents with increasing sample depth resulted in a hardened layer of 300 μm in the carburized samples. Meanwhile, slight influence on the internal microstructure and hardness indicated that solid carburization was an effective method in strengthening the surface of titanium alloy and titanium matrix composite.
基金Project (51001071) supported by the National Natural Science Foundation of China Projects (2012CB619400, 2012CB619600) supported by the National Basic Research Program of China+1 种基金Project (2010DFA52550) supported by the International S&T Cooperation Program of ChinaProject (20100470031) supported by China Postdoctoral Science Foundation
文摘To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.
基金Project(51175138) supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011) supported by the Fundamental Research Funds for the Central Universities,China
文摘Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites was characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The selected area electron diffraction (SAED) for the interface was investigated. The elements at the interface were scanned by energy dispersive spectroscopy (EDS) and the EDS mapping was also obtained. X-ray diffraction (XRD) analysis was carried out for the composites fabricated by 1 pass, 2 passes and 4 passes ECAP-T. According to the XRD analysis, the influences of ECAP-T pass on the Bragg angle and interplanar spacing for AI crystalline planes were studied. The results show that after ECAP-T, the interface between A1 and SiC within the composites is a belt of amorphous SiO2 containing a trace of A1, Si and C which diffused from the matrix and the reinforcement. With the growing ECAP-T pass, the Bragg angle decreases and interplanar spacing increases for A1 crystalline planes, due to the accumulated lattice strain. The increasing lattice strain of A1 grains also boosts the density of the dislocation within A1 grains.
基金founded by Joint Laboratory of Nuclear Materials and Service Safety (2013966003),China
文摘A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The results indicated that vacuum stirring/casting, B4C/Mg feeding and ingots cooling were essential to the successful fabrication of AA6061-31%B4C composite. Chemical erosion examination verified the designed B4 C content; X-ray fluorescence spectrometer(XFS) showed the chemical composition of Mg and Si in the matrix conformed to industry standards; scanning electronic microscope(SEM) and X-ray diffraction(XRD) revealed that B4 C particles were evenly distributed in the composites with well dispersed Mg2Si precipitates. Tensile testing results showed that the AA6061-31%B4C composite had a tensile strength of 340 MPa, improved by 112.5% compared with AA1100-31%B4C composite, which is attributed to the enhanced strength of the matrix alloy.
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(2013AA8011004B)supported by National High Technology Research and Development Program of ChinaProject(CX201011)supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.
基金Projects (51101043, 50801017, 51001036) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.201130) supported by the Fundamental Research Funds for the Central Universities, China
文摘SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.