Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide refe...Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide reference for the implementation of effective risk early warning of pollution from heavy metal deposition and safe production of rice in mining areas of Guangxi.展开更多
Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the g...Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.展开更多
Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray dif...Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.展开更多
A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These c...A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation.展开更多
In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopam...In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopamine (PDA) decorated Au nanoparticles (Au@PDA NPs) for ultrasensitive detection of carcinoembryonic antigen (CEA) has been successfully achieved. The ECL of CdSe@ZnS QDs with different sizes has been investigated carefully, especially cooperation with TiO2 NPs. Au@PDA NPs have been synthesized and characterized by transmission electron microscopy (TEM) and UV-Vis spectrum, which acted as ECL quenchers to label the secondary antibody (Ab2) of CEA to form Ab2/Au@PDA NPs conjugates. The sandwich-structured immunosensor was formed between capture antibody (Abl) on CdSe@ZnS QDs/TiO2 NPs/glassy carbon electrode, CEA and Ab2/Au@PDA NPs conjugates, resulting in a proportional ECL quenching signal relevant to the CEA concentration. Thus, CEA as a model biomarker has been detected in the linear range from 0.001 to 100 ng mL^-1 with a limit of detection of 0.35 pg mL^-1 (S/N = 3).展开更多
Immune checkpoint blockade(ICB) has been regarded as one promising approach for tumor immunotherapy. Here, we report a functional nanoplatform based on generation 5(G5) poly(amidoamine)(PAMAM)dendrimer-entrapped gold ...Immune checkpoint blockade(ICB) has been regarded as one promising approach for tumor immunotherapy. Here, we report a functional nanoplatform based on generation 5(G5) poly(amidoamine)(PAMAM)dendrimer-entrapped gold nanoparticles(Au DENPs) as a nonviral vector to deliver programmed death-ligand 1(PDL1) small interfering RNA(siPD-L1) for subsequent PD-L1 gene silencing-mediated tumor immunotherapy. In this work,G5 dendrimers with amine termini were partially decorated with methoxy polyethylene glycol(m PEG) on their periphery,entrapped Au NPs within their interiors, and were eventually labeled with fluorescamine. The generated functional Au DENPs possess desired dispersibility in water and colloidal stability, satisfactory cytocompatibility after complexation with siPD-L1, and efficient gene delivery performance. Strikingly, the functional Au DENPs enabled the delivery of siPDL1 to cancer cells to efficiently knock down the PD-L1 protein expression, thus boosting the ICB-based immunotherapy of a xenografted melanoma mouse tumor model with a tumor inhibition efficiency much higher than the PD-L1 antibody.The immune responses were also well demonstrated by downregulation of PD-L1 protein on the tumor cell surface and abundant distribution of CD8+and CD4+T cells in the infiltrating tumor tissue and spleen organ. The developed functional dendrimer-based nanoplatform may be promising to boost ICB-based immunotherapy of other tumor types.展开更多
Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface are...Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.展开更多
A sensitive electrochemical immunoassay system for the detection of a protein tumor biomarker through a dual amplified strategy was reported. Firstly, this protocol involves in the electropolymerization of o-aminobenz...A sensitive electrochemical immunoassay system for the detection of a protein tumor biomarker through a dual amplified strategy was reported. Firstly, this protocol involves in the electropolymerization of o-aminobenzoic acid (o-ABA) on a glass carbon electrode (GCE). Subsequently, capture anti-CEA (Abl) is covalently linked to poly(o-ABA) (PAB) film, via N-(3-dimethylamminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysulfosuccinimid sodium salt (NHS) activation of the carboxyl groups and surface blocking with ethanolamine. Later, the target, carcinoembryonic antigen (CEA), is sandwiched between an electrode surface confined Ab1 and the alkaline phosphatase-labeled signal anti-CEA antibodies conjugated with gold nanoparticles (Ab2-ALP-AuNP bioconjugates). The dual biocatalytic signal amplification for CEA monitoring is achieved by coupling the numerous enzymes loaded on the AuNPs with redox-recycling of the enzymatic products in the presence of the secondary enzyme and the corresponding substrate. The novel dramatic signal amplification strategy, exhibits a good linearity at the studied concentration range from 0.005 to 50 ng mL-1 towards CEA with a detection limit of 2 pg mL-1 (S/N=3). There is a 5-100-fold improvement in detection limit compared to other similar studies. The developed dual signal amplified strategy shows good selectivity, regeneration, stability and acceptable reproducibility. Therefore, the signal amplification approach holds great potential applications in detection of ultra-trace protein biomarkers.展开更多
基金Supported by Foundation for Scientific and Technological Development of Guangxi Academy of Agricultural Sciences(2017JM06)Special Funds for Basic Scientific Research of Guangxi Academy of Agricultural Sciences(2015YT32)+1 种基金Key Planning Project for Research and Development of Guangxi,China(AB16380084)National Major Research Development Program of China(2016YFD0800700)~~
文摘Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide reference for the implementation of effective risk early warning of pollution from heavy metal deposition and safe production of rice in mining areas of Guangxi.
文摘Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.
基金supported by the National Natural Science Foundation of China (21477146,21303263)the National High Technology Research and Development Program of China (863 Program,2015AA034603)+2 种基金Beijing Nova Program (Z141109001814072)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130007120011)the Science Foundation of China University of Petroleum-Beijing (YJRC-2013-13,2462013BJRC003)~~
文摘Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.
基金supported by the National High Technology Research and Development Program of China(863 Program,2015AA034603)the National Natural Science Foundation of China(21477146,21673142 and 21303263)+2 种基金the Beijing Nova Program(Z141109001814072)the Specialized Research Fund for the Doctoral Program of Higher Education(20130007120011)the Science Foundation of China University of Petroleum-Beijing(YJRC-2013-13,2462013BJRC003)~~
文摘A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation.
基金supported by the National Natural Science Foundation of China (21575022, 21535003)the National High Technology Research and Development Program of China (2015AA020502)+1 种基金the Open Research Fund of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Universitythe Fundamental Research Funds for the Central Universities (KYLX15-0127)
文摘In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopamine (PDA) decorated Au nanoparticles (Au@PDA NPs) for ultrasensitive detection of carcinoembryonic antigen (CEA) has been successfully achieved. The ECL of CdSe@ZnS QDs with different sizes has been investigated carefully, especially cooperation with TiO2 NPs. Au@PDA NPs have been synthesized and characterized by transmission electron microscopy (TEM) and UV-Vis spectrum, which acted as ECL quenchers to label the secondary antibody (Ab2) of CEA to form Ab2/Au@PDA NPs conjugates. The sandwich-structured immunosensor was formed between capture antibody (Abl) on CdSe@ZnS QDs/TiO2 NPs/glassy carbon electrode, CEA and Ab2/Au@PDA NPs conjugates, resulting in a proportional ECL quenching signal relevant to the CEA concentration. Thus, CEA as a model biomarker has been detected in the linear range from 0.001 to 100 ng mL^-1 with a limit of detection of 0.35 pg mL^-1 (S/N = 3).
基金supported by the National Key R&D Program of China (2017YFE0196200)the National Natural Science Foundation of China (81761148028 and 21773026)+3 种基金the Science and Technology Commission of Shanghai Municipality (19XD1400100,205207130300,20DZ2254900 and 19410740200)support by FCT-Funda??o para a Ciência e a Tecnologia through the CQM Base Fund—UIDB/00674/2020Programmatic Fund—UIDP/00674/2020ARDITI-Agência Regional para o Desenvolvimento da Investiga??o Tecnologia e Inova??o,through the project M1420-01-0145-FEDER-000005—Centro de Química da Madeira—CQM+ (Madeira 14-20 Program)。
文摘Immune checkpoint blockade(ICB) has been regarded as one promising approach for tumor immunotherapy. Here, we report a functional nanoplatform based on generation 5(G5) poly(amidoamine)(PAMAM)dendrimer-entrapped gold nanoparticles(Au DENPs) as a nonviral vector to deliver programmed death-ligand 1(PDL1) small interfering RNA(siPD-L1) for subsequent PD-L1 gene silencing-mediated tumor immunotherapy. In this work,G5 dendrimers with amine termini were partially decorated with methoxy polyethylene glycol(m PEG) on their periphery,entrapped Au NPs within their interiors, and were eventually labeled with fluorescamine. The generated functional Au DENPs possess desired dispersibility in water and colloidal stability, satisfactory cytocompatibility after complexation with siPD-L1, and efficient gene delivery performance. Strikingly, the functional Au DENPs enabled the delivery of siPDL1 to cancer cells to efficiently knock down the PD-L1 protein expression, thus boosting the ICB-based immunotherapy of a xenografted melanoma mouse tumor model with a tumor inhibition efficiency much higher than the PD-L1 antibody.The immune responses were also well demonstrated by downregulation of PD-L1 protein on the tumor cell surface and abundant distribution of CD8+and CD4+T cells in the infiltrating tumor tissue and spleen organ. The developed functional dendrimer-based nanoplatform may be promising to boost ICB-based immunotherapy of other tumor types.
基金partly supported by the National Natural Science Foundation of China(21673033)Sichuan Science and Technology Program(2020071)the Fundamental Research Founds for the Central Universities(ZYGX2019J024).
文摘Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.
基金supported by the National Natural Science Foundation of China (20905062 & 20675064)the Natural Science Foundation Project of Chongqing City (CSTC-2009BB5003 & CSTC-2009BA1003)+1 种基金China Post-doctoral Science Foundation (20090460715)research funds from Southwest University (SWUB2008078 & XDJK2009B013)
文摘A sensitive electrochemical immunoassay system for the detection of a protein tumor biomarker through a dual amplified strategy was reported. Firstly, this protocol involves in the electropolymerization of o-aminobenzoic acid (o-ABA) on a glass carbon electrode (GCE). Subsequently, capture anti-CEA (Abl) is covalently linked to poly(o-ABA) (PAB) film, via N-(3-dimethylamminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysulfosuccinimid sodium salt (NHS) activation of the carboxyl groups and surface blocking with ethanolamine. Later, the target, carcinoembryonic antigen (CEA), is sandwiched between an electrode surface confined Ab1 and the alkaline phosphatase-labeled signal anti-CEA antibodies conjugated with gold nanoparticles (Ab2-ALP-AuNP bioconjugates). The dual biocatalytic signal amplification for CEA monitoring is achieved by coupling the numerous enzymes loaded on the AuNPs with redox-recycling of the enzymatic products in the presence of the secondary enzyme and the corresponding substrate. The novel dramatic signal amplification strategy, exhibits a good linearity at the studied concentration range from 0.005 to 50 ng mL-1 towards CEA with a detection limit of 2 pg mL-1 (S/N=3). There is a 5-100-fold improvement in detection limit compared to other similar studies. The developed dual signal amplified strategy shows good selectivity, regeneration, stability and acceptable reproducibility. Therefore, the signal amplification approach holds great potential applications in detection of ultra-trace protein biomarkers.