期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于金字塔场景分析网络改进的语义分割算法 被引量:2
1
作者 王嘉 张楠 +1 位作者 孟凡云 王金鹤 《计算机工程与应用》 CSCD 北大核心 2021年第19期220-227,共8页
图像语义分割是图像识别中的一个经典难题,是机器视觉研究的一个热点。但在实际应用中,会出现语义标签预测不准确、所分割对象与背景之间边缘信息损失问题,这已逐渐成为了图像理解的瓶颈。据此,提出了一种基于金字塔场景分析网络(PSPNet... 图像语义分割是图像识别中的一个经典难题,是机器视觉研究的一个热点。但在实际应用中,会出现语义标签预测不准确、所分割对象与背景之间边缘信息损失问题,这已逐渐成为了图像理解的瓶颈。据此,提出了一种基于金字塔场景分析网络(PSPNet)的网络改进结构,在特征学习模块中将输入图在原残差网络(ResNet)的基础上通过在网络内部增加卷积、池化操作,进一步学习各个层次特征,将所学习到的多个低层次特征图与高层次特征图相加,得到新的具有更多空间位置信息的特征图;为得到丰富的上下文信息,利用PSPNet的金字塔池化结构,将特征图中全局上下文信息与不同尺度局部上下文信息相结合,进行卷积和上采样,得到最终预测图。仿真实验结果表明,所改进的方法在PASCAL VOC 2012测试集中平均交并比(Mean Intersectionover Union,MIoU)达到78.5%,较基准算法提升了1.7%。 展开更多
关键词 语义分割 深度学习 金字塔场景分析网络(pspnet) 残差网络(ResNet) 平均交并比
下载PDF
基于改进PSPnet-MobileNetV2的煤岩界面快速精准识别
2
作者 王海舰 刘丽丽 +1 位作者 赵雪梅 张强 《振动.测试与诊断》 EI CSCD 北大核心 2024年第4期793-800,832,833,共10页
针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主... 针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主动红外试验平台,采集并获取短时主动热激励作用下的煤岩界面红外热图像,构建了煤岩红外图像数据集;对传统PSPnet模型进行改进,采用轻量级网络模型MobileNetV2作为主干网络提取特征,大幅降低了网络模型所占内存和训练时间,同时将注意力机制模块(convolutional block attention module,简称CBAM)与金字塔场景解析(pyramid scene parsing,简称PSP)模块的上采样特征层和PSPnet网络模型的浅层特征层进行融合,有效提升模型对特征的细化能力。试验结果表明:基于改进的PSPnet-MobileNetV2网络模型所占内存仅为9.12 MB,较原始PSPnet模型减少了94.88%;煤和岩的交并比为96.52%和96.87%,分别提升了8.29%和7.7%;像素准确度分别为97.25%和99.15%,较原始网络模型分别提升了7.32%和1.64%;测试时间降低了53.70%。该方法为煤岩界面的快速和预先精准识别提供了一种有效技术手段。 展开更多
关键词 煤岩识别 主动红外激励 金字塔场景解析网络(pspnet) MobileNetV2 注意力机制模块
下载PDF
结合金字塔池化模块的YOLOv2的井下行人检测 被引量:20
3
作者 王琳 卫晨 +1 位作者 李伟山 张钰良 《计算机工程与应用》 CSCD 北大核心 2019年第3期133-139,共7页
煤矿井下的行人检测对于保障井下作业人员的安全至关重要。煤矿井下光照暗、粉尘大,直接用YOLOv2检测井下行人,准确率低,仅达到54.3%。针对此问题,以YOLOv2网络为基础,结合了金字塔场景解析网络(PSPnet)中的金字塔池化模块,充分利用图... 煤矿井下的行人检测对于保障井下作业人员的安全至关重要。煤矿井下光照暗、粉尘大,直接用YOLOv2检测井下行人,准确率低,仅达到54.3%。针对此问题,以YOLOv2网络为基础,结合了金字塔场景解析网络(PSPnet)中的金字塔池化模块,充分利用图片的上下文信息,提出了YOLOv2_PPM网络。在井下行人检测数据集上进行实验,YOLOv2_PPM网络的准确率提升到63.5%,较YOLOv2网络增加了9.2%,且速度达到了39帧/s(FPS)。当输入图片的大小为480×480时,检测的准确率提升到71.6%,同时速度为28帧/s,满足了实时检测的要求。 展开更多
关键词 目标检测 行人检测 YOLOv2 金字塔场景解析网络(pspnet)
下载PDF
基于深度学习的配电柜指针仪表示值识读研究
4
作者 周燕菲 张运楚 +1 位作者 刘一铭 张欣毅 《计算机测量与控制》 2023年第9期324-331,共8页
为准确读取配电柜指针式仪表的示值,保证巡检机器人作出相应决策,提出一种结合改进YOLOv5和PSPNet模型的指针仪表检测及示值识读方法;首先利用主干网络替换为轻量化网络MobileNetv3的YOLOv5算法检测定位表盘区域;然后采用特征提取网络... 为准确读取配电柜指针式仪表的示值,保证巡检机器人作出相应决策,提出一种结合改进YOLOv5和PSPNet模型的指针仪表检测及示值识读方法;首先利用主干网络替换为轻量化网络MobileNetv3的YOLOv5算法检测定位表盘区域;然后采用特征提取网络替换为MobileNetv2的PSPNet算法对表盘的刻度线区域和指针进行分割,并通过最小二乘法圆拟合和霍夫直线检测法得到指针回转中心及指针的偏转角度;最后结合指针偏转角度和相邻主刻度线与回转中心连线的偏转角度,通过公式法求取仪表示值;实验结果表明,该算法能够准确提取配电柜上的指针仪表表盘,并对表盘中的刻度和指针进行精准分割,在误差允许的范围内指针仪表示值识读相对误差最大为6.5%,满足实际工程应用的需求。 展开更多
关键词 指针式仪表 深度学习 仪表检测 语义分割 金字塔场景分析网络 示值识读
下载PDF
基于深度学习语义分割的导光板缺陷检测方法 被引量:11
5
作者 柳锋 李俊峰 戴文战 《计算机系统应用》 2020年第6期29-38,共10页
当前导光板表面缺陷仍主要由人工肉眼观察进行检测,仅有少数生产厂家利用传统的图像处理方法进行检测.由于导光板缺陷在高分辨率工业相机拍摄的图像成像下仍极其微小,且不同缺陷的特征各异,以及整张导光板自身的导光点分布密集、不均匀... 当前导光板表面缺陷仍主要由人工肉眼观察进行检测,仅有少数生产厂家利用传统的图像处理方法进行检测.由于导光板缺陷在高分辨率工业相机拍摄的图像成像下仍极其微小,且不同缺陷的特征各异,以及整张导光板自身的导光点分布密集、不均匀等纹理特点,导致传统的图像处理检测方法需要经验丰富的视觉工程师进行大量的特征提取算法编程工作和昂贵的代码维护成本,准确率低且稳定性差,为此提出一种基于深度学习语义分割的缺陷检测方法.该方法通过训练神经网络的方式来自主学习提取导光板缺陷特征从而避免繁杂的特征提取算法编程工作.首先,对搜集的导光板缺陷进行缺陷标记,制作样本集;其次,利用迁移学习将预先训练好的金字塔场景解析网络(PSPNet)对标记样本进行再训练;进而,利用训练好的模型实现对导光板缺陷的检测;由于单独的深度学习语义分割缺陷检测方法通常无法满足工业实际应用需求,最后还需结合简单的机器视觉方法,对深度学习语义分割方法检出的所有疑似缺陷区域进行二次判断筛选.实验结果表明,该方法针对亮点、暗点和划痕3种缺陷的检出率高达96%,基本可以满足工业检测要求. 展开更多
关键词 导光板 缺陷检测 深度学习 金字塔场景解析网络(pspnet) 语义分割 机器视觉
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部