期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
多注意力机制金字塔池化金手指划痕分割方法
1
作者 吴良武 周永霞 +1 位作者 王宇航 朱钰萍 《计算机工程与应用》 CSCD 北大核心 2023年第1期213-220,共8页
针对传统图像处理方法和基于深度学习的分类模型对金手指表面划痕检测效果不理想的情况,提出了一种多注意力机制金字塔池化方法对金手指表面划痕进行语义分割。采用ResNet50模型获取输入图像的特征图;在金字塔的不同层中将特征图分成大... 针对传统图像处理方法和基于深度学习的分类模型对金手指表面划痕检测效果不理想的情况,提出了一种多注意力机制金字塔池化方法对金手指表面划痕进行语义分割。采用ResNet50模型获取输入图像的特征图;在金字塔的不同层中将特征图分成大小不同的子区域,然后对每个子区域进行平均池化操作;池化后的特征图加入多种注意力机制来提取关键部分的特征信息,并使用边界细化模块对边缘区域进一步精细化,提高分割准确度。通过上采样,将四种不同尺寸的特征图采用级联的方式对划痕区域进行特征融合;与带有整体信息的特征图拼接后经过卷积操作得到最后的预测结果。实验结果表明,本文采用的方法较其他常用分割模型在MIOU和MPA指标上具有明显提升,分别达到86.03%和94.35%,具有一定的应用价值。 展开更多
关键词 金手指 语义分割 金字塔池化 注意力机制 边界细化模块 MIOU指标
下载PDF
PD-Net:基于金字塔池化模块改进的Dehaze-Net
2
作者 宋翼洋 刘刚 《应用数学进展》 2021年第10期3351-3360,共10页
对单幅雾天图像进行去雾是一个困难的任务,本文提出了一种名叫PD-Net的神经网络模型用于单幅图像去雾。该模型在Dehaze-Net模型中引入了金字塔池化模块且额外添加残差块。金字塔池化模块增强了模型对全局信息的提取,残差块有效地抑制了... 对单幅雾天图像进行去雾是一个困难的任务,本文提出了一种名叫PD-Net的神经网络模型用于单幅图像去雾。该模型在Dehaze-Net模型中引入了金字塔池化模块且额外添加残差块。金字塔池化模块增强了模型对全局信息的提取,残差块有效地抑制了梯度消失现象。在仿真实验中,本文使用RESIDE数据集中的室内合成有雾图片作为实验数据集,定量分析比较了各种去雾方法对实验数据集的去雾结果,PD-Net模型展现了良好的性能。在真实实验中,对RESIDE数据集中的室外真实有雾图片进行去雾分析。真实实验的结果表明,相较于其他算法,PD-Net模型在大面积的天空区域及图片的细节处有更好的效果。 展开更多
关键词 去雾 Dehaze-Net 金字塔池化模块 PD-Net
下载PDF
基于空洞卷积与注意力模块的立体匹配算法 被引量:3
3
作者 刘志浩 孟凡云 +1 位作者 王金鹤 张楠 《计算机工程》 CAS CSCD 北大核心 2023年第8期223-231,共9页
基于卷积神经网络的立体匹配算法大多需要较大的感受野,但多数算法在扩大感受野的同时参数量也容易剧增,导致算法对训练数据的规模要求较高。提出一种基于空洞卷积和注意力模块的立体匹配算法,采用空洞卷积模块,将残差结构和空洞卷积相... 基于卷积神经网络的立体匹配算法大多需要较大的感受野,但多数算法在扩大感受野的同时参数量也容易剧增,导致算法对训练数据的规模要求较高。提出一种基于空洞卷积和注意力模块的立体匹配算法,采用空洞卷积模块,将残差结构和空洞卷积相结合,以在较少参数量的情况下扩大网络的感受野。使用注意力模块,通过不同层次的卷积整合多层次的信息,增加所提取信息的完整性。采用空间金字塔池化模块,通过帯权的金字塔池化扩大模型的感受野,并赋予不同层次信息不同的重要性程度。实验结果表明,在相同数据集和训练次数的情况下,所提算法相对于DispNetC等其他算法具有较快的收敛速度,且结构简单,参数量较少,适用于小样本数据。 展开更多
关键词 立体匹配 小样本数据 空洞卷积 注意力模块 金字塔池化
下载PDF
基于改进Yolov3-Tiny的加油站目标检测算法研究
4
作者 张利巍 杨万帅 《吉林大学学报(信息科学版)》 CAS 2024年第3期559-566,共8页
针对加油站场景中的目标检测算法存在检测精度低的问题,提出一种基于Yolov3-Tiny的加油站场景目标检测改进算法。该算法以Yolov3-Tiny模型为基础网络,引入Yolov4算法提出的Mosaic图像增强方式进行数据预处理,采用密集连接模块重构特征... 针对加油站场景中的目标检测算法存在检测精度低的问题,提出一种基于Yolov3-Tiny的加油站场景目标检测改进算法。该算法以Yolov3-Tiny模型为基础网络,引入Yolov4算法提出的Mosaic图像增强方式进行数据预处理,采用密集连接模块重构特征提取网络,并将CBAM(Convolutional Block Attention Module)注意力模块与金字塔池化模块(Pyramid Pooling Module)加入到网络中,最终实现了加油站场景下的目标检测。实验结果表明,改进的算法相比于原算法的总体mAP提升了8.2%,能更有效地应用于加油站目标检测中。 展开更多
关键词 目标检测 密集连接模块 注意力机制 金字塔池化模块 图像增强
下载PDF
改进YOLOv5s的无人机视角下小目标检测算法 被引量:4
5
作者 刘涛 高一萌 +1 位作者 柴蕊 李政通 《计算机工程与应用》 CSCD 北大核心 2024年第1期110-121,共12页
无人机视角的小目标图像具有目标分布密集、类别不均衡以及特征不明显的特点,导致目标检测任务中出现漏检、误检的问题。针对这些问题,提出一种改进YOLOv5s小目标检测方法,以达到提高目标检测准确率与精确度的目的。重新聚类锚框,更精... 无人机视角的小目标图像具有目标分布密集、类别不均衡以及特征不明显的特点,导致目标检测任务中出现漏检、误检的问题。针对这些问题,提出一种改进YOLOv5s小目标检测方法,以达到提高目标检测准确率与精确度的目的。重新聚类锚框,更精确地锁定检测区域。更改骨干网络结构,在空间金字塔池化层增加卷积,保证充分获取检测目标特征。同时,将网络结构中的C3模块替换成融合通道注意力机制的轻量级SEC2f模块,以提升网络对于小目标检测的局部特征捕获能力。融合解耦检测头,结合自适应锚框计算,有效提取目标区域的特征。在相同参数、相同环境条件下,在DOTA数据集上和VisDrone数据集上检测精度分别提升6.1%、5.2%,表明改进方法在小目标检测任务上的有效性;在公开数据集voc2007+2012上做通用性对比实验,结果表明改进算法具有通用性。 展开更多
关键词 YOLOv5s 聚类算法 SEC2f模块 空间金字塔池化 解耦检测头
下载PDF
基于跨层次聚合网络的实时城市街景语义分割
6
作者 侯志强 程敏婕 +2 位作者 马素刚 屈敏杰 杨小宝 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1212-1226,共15页
随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战... 随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战,主要表现为不同类别的像素区分不够清晰、对于复杂场景结构的理解不够精准以及对小尺度对象或大尺度结构的分割不准确等问题。为此,本文提出一种基于跨层次聚合网络的实时城市街景语义分割算法。首先,在编码器末端设计了结合跨层次聚合的金字塔池化模块,用于高效提取多尺度上下文信息;其次,在编码器和解码器之间设计了跨层次聚合模块,通过引入通道注意力机制增强信息的表征能力,逐级聚合编码器阶段的特征以充分实现特征复用;最后,在解码器阶段设计了多尺度融合模块,在通道维度聚合全局信息与局部信息,促进深层特征与浅层特征的融合。将所提算法在两个通用的城市街景数据集上进行了验证。在一张RTX3090显卡上(TensorRT测速环境),本文算法在Cityscapes测试集以294 FPS的实时性达到73.0%mIoU的准确性,在更高分辨率的图像上以164 FPS的实时性达到75.8%mIoU的准确性;在CamVid数据集以239 FPS的实时性达到74.8%mIoU的准确性。实验结果表明,本文算法在准确性与实时性之间取得了有效平衡,对比其他算法的语义分割性能具有显著提升,为实时城市街景语义分割领域带来了新的突破。 展开更多
关键词 语义分割 卷积神经网络 城市街景 编码器-解码器结构 金字塔池化模块
下载PDF
基于改进高分辨率网络的多语义图像分割方法
7
作者 张少杰 彭富明 +3 位作者 方斌 张子祥 相福磊 何浩天 《机械制造与自动化》 2024年第3期181-184,共4页
针对室外复杂场景下图像分割难度较大的问题,提出一种基于HRNet的多语义图像分割模型(HR_DfeNet)。该模型通过引入通道注意力和空间注意力模块优化特征提取,通过改进金字塔池化模块设计ASPP_M模块形成高分辨率特征提取分支,并与多种注... 针对室外复杂场景下图像分割难度较大的问题,提出一种基于HRNet的多语义图像分割模型(HR_DfeNet)。该模型通过引入通道注意力和空间注意力模块优化特征提取,通过改进金字塔池化模块设计ASPP_M模块形成高分辨率特征提取分支,并与多种注意力机制融合。在Cityscape数据集上,HR_DfeNet相较于传统分割模型表现出不同程度的分割优化效果。 展开更多
关键词 室外复杂场景 图像分割 注意力模块 金字塔池化模块
下载PDF
基于多尺度注意残差网络的地震波形分类研究
8
作者 王梦琪 黄汉明 +1 位作者 吴业正 王鹏飞 《地震工程学报》 CSCD 北大核心 2024年第3期724-733,共10页
选用2010年2月—2016年12月发生在北京顺义及河北三河等首都圈邻近区域的117个地震事件(包括54个天然地震事件和63个非天然地震事件——爆炸事件)作为研究对象,利用文章所提出的多尺度注意残差网络对其中的天然地震事件和爆炸事件波形... 选用2010年2月—2016年12月发生在北京顺义及河北三河等首都圈邻近区域的117个地震事件(包括54个天然地震事件和63个非天然地震事件——爆炸事件)作为研究对象,利用文章所提出的多尺度注意残差网络对其中的天然地震事件和爆炸事件波形进行二分类。首先,对原始地震波形进行简单预处理并截取成相同长度的地震时序数据,直接将其作为网络模型的输入;其次,选用含有残差模块的深度神经网络作为基础网络,利用深度神经网络对特征的自动提取能力,省略了传统波形分类需要提前提取时域波形的特征作为分类算法输入的步骤;然后,融合通道注意力机制(ECA)并对其进行改进,将空间维度的信息融入通道信息,优化了网络对关键信息的关注,更好地聚焦重要特征;最后,使用空间金字塔池化代替最大池化进行多尺度特征融合,得到更多的特征信息,构成多尺度注意残差网络。实验结果表明,最高分类准确率为97.11%,平均分类准确率为96.53%,证明了多尺度注意残差网络在地震波形分类任务中的有效性,为震源类型识别工作提供了一种新的方法。 展开更多
关键词 天然地震 人工爆炸 残差模块 注意力机制 空间金字塔池化
下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络
9
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
下载PDF
改进Mask R-CNN的无人机影像建筑物提取
10
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
基于改进PIDNet的水位线检测算法
11
作者 李仲 冒睿瑞 +2 位作者 王晓龙 王根一 安国成 《计算机工程》 CAS CSCD 北大核心 2024年第8期102-112,共11页
PIDNet是三分支网络构成的语义分割模型,在众多竞赛数据集中均保持优秀的分割精度。然而,积分分支中进行多次下采样和金字塔池化模块中多分支特征融合冗余的缺点限制了算法精度的提高。在水位线检测任务中,现有算法的缺点会导致局部细... PIDNet是三分支网络构成的语义分割模型,在众多竞赛数据集中均保持优秀的分割精度。然而,积分分支中进行多次下采样和金字塔池化模块中多分支特征融合冗余的缺点限制了算法精度的提高。在水位线检测任务中,现有算法的缺点会导致局部细节信息丢失,使得水体边缘精细化检测的能力有所下降。为了缓解这个问题,提出一种基于改进PIDNet的水位线检测算法。首先设计一种结合通道注意力的轻量化像素增强模块,在积分分支下采样过程中进行像素增强,减少局部信息丢失。然后对金字塔池化模块进行重构,在减小池化输出特征大小的基础上减少并行分支数,同时在特征融合时结合通道注意力进一步加强关注重要特征的能力,提高水位线边缘的分割精度。此外,融合多场景的河流数据集,避免复杂场景下检测出的水位线位置发生偏移和断线。实验结果表明,所提方法(S和M)在水位线检测任务中相对原算法(S和M)在3个性能指标上都有所提高,以M规模为例,像素正确率提高了1.47个百分点,平均交并比提高了1.04个百分点,检测延迟降低了0.9 ms。 展开更多
关键词 语义分割 水位线检测 金字塔池化模块 注意力 多场景
下载PDF
基于多尺度特征的地基云图分类检测算法
12
作者 孙继飞 贾克斌 《计算机科学》 CSCD 北大核心 2024年第S01期305-310,共6页
地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据。然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用。特别是当云图中出现多类云状时,现有技术难以... 地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据。然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用。特别是当云图中出现多类云状时,现有技术难以按不同云类分别划分区域并进行云量计算。为了解决这一问题,提出用基于深度学习的语义分割方法实现对地基云图的按类分割。首先,构建了地基云图语义分割数据集GBCSS,该数据集包含3000幅云图,共计11个类别。在此基础上,提出了一种基于U型神经网络的改进方案UNet-PPM作为地基云图语义分割模型。为了增强网络对云的轮廓特征提取能力,引入了金字塔池化模块。该模块提取并聚合了不同尺度的图像特征,提升了网络获取全局信息的能力。最后,将设计的网络在GBCSS上进行了训练以及评估,其在测试集上达到了91.5%的像素准确率。与U-Net相比,UNet-PPM在像素准确率上有5.4%的提升,表明该网络对云的轮廓特征提取的能力更强,以及语义分割应用在地基云图中的可行性。 展开更多
关键词 地基云图 语义分割 云图数据集 全卷积网络 金字塔池化模块
下载PDF
融合轻量化ASPP和U-Net的遥感影像烤烟种植区域提取
13
作者 郝戍峰 高宇 +5 位作者 刘萍 李宇昂 张华栋 任鸿杰 田帅杰 寇文韬 《航天返回与遥感》 CSCD 北大核心 2024年第4期139-149,共11页
针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流... 针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流函数(Rectified Linear Unit,ReLU)替换为ReLU6激活函数,能够在低精度计算时压缩动态范围,从而使算法更具鲁棒性;最后,该模型通过采用形态学孔洞填充构建标签图后处理算法,实现分割结果优化。为验证该模型框架的有效性和适用性,文章采用无人机遥感影像作为实验数据集,构建与传统语义分割模型的对比实验以及消融实验等。实验结果表明,通过与FCN、U-Net、SegNet和DeepLabV3+等传统语义分割算法相比较,文章提出的模型获得了较好的分割效果,其像素准确率和平均交并比分别为93.7%和84.1%。此外,该模型在保证模型精度的情况下,还能够提高模型的计算速度。 展开更多
关键词 烤烟种植区域提取 轻量化空洞空间金字塔池化模块 U型网络 后处理
下载PDF
基于改进YOLOv5及危险区域判断的碰撞预警系统研究
14
作者 衣振兴 詹振飞 +2 位作者 毛青 孙博文 王菊 《汽车技术》 CSCD 北大核心 2024年第4期1-6,共6页
为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引... 为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引入预警激活区域过滤相对安全的目标,提高了预警系统的预警精确度。结果表明,引入预警激活区域后,与无预警激活区域相比,预警系统的准确度、精度和召回率分别提高20%、50%和26.7%,运行速度提升49.1%,进一步证明了方法的有效性。 展开更多
关键词 YOLOv5 通道注意力模块 路径聚合网络 空间金字塔池化 预警激活区域 碰撞预警系统
下载PDF
一种改进的基于Inception-ResNet v2的眼疾病识别算法
15
作者 陆阳 任世卿 《电子设计工程》 2024年第20期68-71,共4页
该文旨在解决传统方法在眼疾病识别中分类准确率低的问题,提出了一种改进的眼疾病识别算法,基于Inception-ResNet v2架构,并引入SENet注意力机制、Ghost模块和空洞空间金字塔池化等技术。通过学习通道相关性和加强对重要特征的关注,显... 该文旨在解决传统方法在眼疾病识别中分类准确率低的问题,提出了一种改进的眼疾病识别算法,基于Inception-ResNet v2架构,并引入SENet注意力机制、Ghost模块和空洞空间金字塔池化等技术。通过学习通道相关性和加强对重要特征的关注,显著提高了眼疾病分类的准确率,有效区分常见四种眼疾病数据集。为了进一步提高模型的泛化能力,还引入数据增强技术以减少过拟合。相比Efficient-Net、ResNet和Inception-ResNet等经典深度学习模型,该算法表现更优,为眼疾病早期诊断提供了更准确、高效的方法。 展开更多
关键词 深度学习 Ghost模块 注意力机制 Inception-ResNet v2算法 空洞空间金字塔池化
下载PDF
遥感影像船舶检测的特征金字塔网络建模方法 被引量:14
16
作者 邓睿哲 陈启浩 +1 位作者 陈奇 刘修国 《测绘学报》 EI CSCD 北大核心 2020年第6期787-797,共11页
船舶作为海上运输载体,其准确检测在海洋环境保护、海上渔业生产管理、海上交通与应急处置及国防安全应用中都具有重要意义和价值。目前基于目标检测网络的遥感船舶检测方法因末层特征分辨率不足和卷积固定的几何结构,导致网络难以适应... 船舶作为海上运输载体,其准确检测在海洋环境保护、海上渔业生产管理、海上交通与应急处置及国防安全应用中都具有重要意义和价值。目前基于目标检测网络的遥感船舶检测方法因末层特征分辨率不足和卷积固定的几何结构,导致网络难以适应小尺度且具有随机朝向、形态多变特征的船舶目标,进而限制船舶检测精度。针对该问题,本文提出一种用于遥感影像船舶检测的特征金字塔网络建模方法。首先引入形变卷积/RoI池化模块,以适应朝向和形态多变的船舶目标;其次借鉴在小目标检测中性能出色的特征金字塔网络的建模思想,采用对称式网络和多尺度特征融合的方式进一步融合高级语义和低级空间信息,提升小尺度目标特征分辨率。在40000幅、船舶目标67280余个的遥感影像数据集上的试验结果表明,本文方法能够有效集成形变卷积/RoI池化和多尺度特征融合方法,相较传统CNN船舶检测方法取得明显提升,在准确率、召回率及F1指标上分别达到85.8%、97.9%和91.5%。 展开更多
关键词 船舶检测 特征金字塔网络 形变卷积模块 形变RoI池化模块
下载PDF
基于多尺度与坐标注意力机制的交通标志识别研究
17
作者 胡腾 杨毅强 +2 位作者 邹显迪 孙潇 毛国斌 《齐齐哈尔大学学报(自然科学版)》 2024年第5期8-15,共8页
针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的Resblo... 针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的ResblockD轻量化模块,用于提高算法的检测速度;其次引入特征金字塔池化网络,丰富深层特征图的空间信息,在预测阶段引入坐标注意力机制,降低背景信息的干扰;最后利用具有多次跨级融合的路径增强特征金字塔网络,提高算法对小型目标物体的识别率。在TT100K数据集上进行测试,实验结果表明,相较于YOLOv4-tiny算法,YOLOv4-3RSCtiny算法具有较高的准确性和较好的实时性。 展开更多
关键词 ResblockD模块 特征金字塔池化网络 路径增强特征金字塔网络 坐标注意力机制
下载PDF
基于多尺度特征的视盘分割方法 被引量:1
18
作者 燕杨 曹娅迪 黄文博 《吉林大学学报(理学版)》 CAS 北大核心 2023年第1期136-142,共7页
针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM... 针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM-ONE v.3上进行多组对比实验和评估,实验结果表明,该方法对视盘分割的平均交并比为0.908, Dice系数为0.958,均方误差为0.002,比现有算法各项指标性能均有提高. 展开更多
关键词 视盘分割 视杯分割 金字塔池化模块 彩色眼底图像
下载PDF
高分辨率皮肤黑色素瘤图像的两阶段式分割算法 被引量:1
19
作者 贵向泉 张馨月 李立 《计算机工程》 CAS CSCD 北大核心 2023年第11期267-274,共8页
皮肤黑色素瘤切片图像分辨率过大且病理特征表现形式多样,现有很多分割算法结果不精准同时消耗巨大显卡内存。针对该问题,提出一种低显存消耗的两阶段式精细分割算法。该算法第一阶段采用全局分割网络对以ResNet50为骨干的特征金字塔结... 皮肤黑色素瘤切片图像分辨率过大且病理特征表现形式多样,现有很多分割算法结果不精准同时消耗巨大显卡内存。针对该问题,提出一种低显存消耗的两阶段式精细分割算法。该算法第一阶段采用全局分割网络对以ResNet50为骨干的特征金字塔结构进行改进,图像特征提取过程中使用全局金字塔平均池化模块增强图像全局语义信息的提取,并采用多尺度特征融合分支将高层特征图的语义信息融入到低层特征图中,增强低层特征图语义信息的表征能力。第二阶段采用一种全局到局部的精细分割策略,以全局分割结果为基准对图像进行剪裁,得到一个较小的候选区域,将其输入到局部分割网络中,局部分割网络仅处理候选区域内的像素并与全局网络对应层共享图像特征,精细分割结果的同时减少显存的消耗。在经典数据集ISIC2018上的实验结果显示,该算法的准确度和IOU分别达到93.5%和82.1%,相较于对比的经典分割算法精度最高且占用的显卡内存减少了22.8%~36.9%,能有效适用于高分辨率皮肤病灶图像的分割任务。 展开更多
关键词 两阶段式分割 ResNet50 特征金字塔结构 全局金字塔平均池化模块 多尺度特征融合分支
下载PDF
面向密集型场景的多尺度行人检测方法
20
作者 吴迪 宋家豪 李睿智 《沈阳师范大学学报(自然科学版)》 CAS 2023年第6期536-541,共6页
针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采... 针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采用Res2Net Block重构骨干网络,加强对细粒度特征信息的利用;最后,加入改进的空间金字塔注意力池化网络,强化模型的多层次特征表达能力。在CrowdHuman数据集进行训练和验证,YOLOv5-SA的平均检测精度达到了85.6%,相比原算法提高了3.8%,检测速度可以达到51 FPS(frames per second),识别精度和检测速度均具有较好的效果,可以有效应用于密集目标行人检测任务。 展开更多
关键词 小目标行人 注意力模块 密集行人检测 空间金字塔池化网络
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部