The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal cataly...The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal catalysts to substitute Pt-based catalysts has become a critical issue in the ORR research field, As an earth-abundant element, the use of Cu to catalyze the ORR has been explored with the ultimate target of finding a replacement for Pt-based catalysts in fuel cells. This review mainly focuses on recent research progress with Cu-based ORR catalysts and aims to aid readers' understanding of the status of development in this field. The review begins with a general update on the state of knowledge pertaining to ORR, This is followed by an overview of recent research based on Cu nanomaterial catalysts, which comprises Cu complexes, compounds, and other structures. Charting the development of Cu-based ORR catalysts shows that designing Cu-based materials to mimic active enzymes is an effective approach for ORR catalysis. By collecting recent developments in the field, we hope that this review will promote further development of Cu-based ORR catalysts and their application in fuel cells.展开更多
Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be est...Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode.展开更多
Highly dispersed metals,metal oxides and their composites on substrates have received considerable interest in catalysis and lithium-ion batteries,because of their superior properties compared with their single-compon...Highly dispersed metals,metal oxides and their composites on substrates have received considerable interest in catalysis and lithium-ion batteries,because of their superior properties compared with their single-component counterparts.In this review,we introduce the properties of supercritical carbon dioxide(scCO2) expanded ethanol,such as low viscosity,near-zero surface tension and high diffusivity.We discuss the deposition procedure and formation mechanism of carbon-based composites in scCO2-expanded ethanol.This method has been used to fabricate several carbon-based composites,such as metal and metal oxide composites deposited on zero-dimensional colloidal carbon,one-dimensional carbon nanotubes,two-dimensional graphene,and three-dimensional hierarchical porous carbon.These materials and their performance as anodic materials for lithium-ion batteries will also be reviewed.展开更多
Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via el...Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.展开更多
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO...A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.展开更多
Water oxidation is significant in both natural and artificial photosynthesis.In nature,water oxidation occurs at the oxygen‐evolving center of photosystem II,and leads to the generation of oxygen,protons,and electron...Water oxidation is significant in both natural and artificial photosynthesis.In nature,water oxidation occurs at the oxygen‐evolving center of photosystem II,and leads to the generation of oxygen,protons,and electrons.The last two are used for fixation of carbon dioxide to give carbohydrates.In artificial processes,the coupling of water oxidation to evolve O2and water reduction to evolve H2is known as water splitting,which is an attractive method for solar energy conversion and storage.Because water oxidation is a thermodynamically uphill reaction and is kinetically slow,this reaction causes a bottleneck in large‐scale water splitting.As a consequence,the development of new and efficient water oxidation catalysts(WOCs)has attracted extensive attention.Recent efforts have identified a variety of mononuclear earth‐abundant transition‐metal complexes as active and stable molecular WOCs.This review article summarizes recent progress in research on mononuclear catalysts that are based on first‐row transition‐metal elements,namely manganese,iron,cobalt,nickel,and copper.Particular attention is paid to catalytic mechanisms and the key O?O bond formation steps.This information is critical for designing new catalysts that are highly efficient and stable.展开更多
Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is...Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is a result of the sluggish oxygen reduction reaction(ORR)kinetics,is a significant source of energy loss and reduces fuel cell efficiency.Further,the need to use Pt in commercial Pt/C cathodes has restricted their large‐scale application in fuel cells because of its high cost and poor durability.Thus,improvements in the activity and durability of Pt‐based catalyst are required to reduce the amount of Pt required and,thus,costs,while increasing the ORR rate and fuel cell power density and promoting widespread PEMFC commercialization.In recent years,atomically ordered Pt‐based intermetallic nanocrystals have received tremendous attention owing to their excellent activity and stability for the ORR.Therefore,in this review,we first introduce the formation of intermetallic compounds from the perspective of thermodynamics and kinetics to lay a theoretical foundation for the design of these compounds.In addition,optimization strategies for Pt‐based ordered intermetallic catalysts are summarized in terms of the catalyst composition,size,and morphology.Finally,we conclude with a discussion of the current challenges and future prospects of Pt‐based ordered alloys.This review is designed to help readers gain insights into the recent developments in and rational design of Pt‐based intermetallic nanocrystals for the ORR and encourage research that will enable the commercialization of PEMFCs.展开更多
Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catal...Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catalysts such as limited conductivity and the necessity of nanostructuring.Herein,we present the synthesis,characterization and electrocatalytic investigation of ternary metal-rich sulfide composites FexCo9-xS8 as well as Ni_(y)Co_(9-y)S_(8)(x=y=0-4.5),which possess pentlandite-type structures.In this study,we show a stepwise alteration of the binary cobalt pentlandite Co9S8 and report on the replacement of cobalt with up to 4.5 equivalents of either iron or nickel.These altered pentlandite composites facilitate the proton reduction in acidic media at different temperatures.We furthermore show that the stoichiometric variation has a decisive influence on the electrochemical activation/deactivation behavior of the catalysts under reductive electrocatalytic conditions.Here,Co-deficient composites display an improved HER performance in contrast to Co_(9)S_(8).Notably,Ni/Co compounds generally tend to show higher catalytic activities towards HER than their respective Fe/Co compounds.展开更多
The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of th...The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of this technology as it enables the improvement of developmental efficiency and selectivity by chemical optimization of morphology and electronic structure. Transition metal-based catalysts are particularly appealing as their d bands have valence electrons which are close to the Fermi level and hence overcome the intrinsic activation barriers and reaction kinetics. The study of Mo, Fe, Co, and Ni-based materials in particular is a very recent research subject that offers various possibilities in electrochemical CO2 reduction applications. Herein, we summarize the recent re-search progress of Mo, Fe, Co, and Ni-based catalysts and their catalytic behavior in electrochemical CO〈sub〉2 reduction. We particularly focus on the relationship between structures and properties, with examples of the key features accounting for the high efficiency and selectivity of the CO2 reduction process. The most significant experimental and theoretical improvements are highlighted. Finally, we concisely discuss the scientific challenges and opportunities for transition metal-based catalysts.展开更多
The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel ...The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.展开更多
Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon t...Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon template into a melamine/Fe-salt mixture to inductively generate highly active Fe-N_x sites for ORR. Using 57 Fe M?sbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we studied the structural composition of the Fe and N co-doped carbon catalysts.Interestingly, the results showed that this system not only converted inactive Fe and Fe-carbides into active Fe-N_4 and other Fe-nitrides, but also improved their intrinsic activities.展开更多
Oxygen evolution from water driven by electrocatalysis or photocatalysis poses a significant challenge as it requires the use of efficient electro-/photo-catalysts to drive the four-electron oxygen evolution reaction(...Oxygen evolution from water driven by electrocatalysis or photocatalysis poses a significant challenge as it requires the use of efficient electro-/photo-catalysts to drive the four-electron oxygen evolution reaction(OER).Herein,we report the development of an effective strategy for the in situ chemical transformation of Fe-based bimetallic MIL-88 metal-organic frameworks(MOFs)into corresponding bimetallic hydroxides,which are composed of amorphous ultrasmall nanoparticles and afford an abundance of catalytically active sites.Optimized MOF-derived NiFe-OH-0.75 catalyst coated on glassy carbon electrodes achieved a current density of 10 mA cm^(-2)in the electrocatalytic OER with a small overpotential of 270 mV,which could be decreased to 235 mV when loading the catalysts on a nickel foam substrate.Moreover,these MOF-derived Fe-based bimetallic hydroxides can be used as efficient cocatalysts when combined with suitable photosensitizers for photocatalytic water oxidation.展开更多
To facilitate the electrochemical CO_(2) reduction(ECR)to fuels and valuable chemicals,the development of active,low cost,and selective catalysts is crucial.We report a novel ECR catalyst consisting of CuO nanoparticl...To facilitate the electrochemical CO_(2) reduction(ECR)to fuels and valuable chemicals,the development of active,low cost,and selective catalysts is crucial.We report a novel ECR catalyst consisting of CuO nanoparticles with sizes ranging from 1.4 to 3.3 nm anchored on Cu metal‐organic framework(Cu‐MOF)nanosheets obtained through a one‐step facile solvothermal method.The nanocomposites provide multiple sites for efficient ambient ECR,delivering an average C_(2)H_(4) faradaic efficiency(FE)of~50.0%at–1.1 V(referred to the reversible hydrogen electrode)in 0.1 mol/L aqueous KHCO_(3) using a two‐compartment cell,in stark contrast to a C_(2)H_(4) FE of 25.5%and 37.6%over individual CuO and Cu‐MOF respectively,also surpassing most newly reported Cu‐based materials under similar cathodic voltages.The C_(2)H_(4) FE remains at over 45.0%even after 10.0 h of successive polarization.Also,a~7.0 mA cm^(–2) C_(2)H_(4) partial geometric current density and 27.7%half‐cell C_(2)H_(4) power conversion efficiency are achieved.The good electrocatalytic performance can be attributed to the interface between CuO and Cu‐MOF,with accessible metallic moieties and the unique two‐dimensional structure of the Cu‐MOF enhancing the adsorption and activation of CO_(2) molecules.This finding offers a simple avenue to upgrading CO_(2) to value‐added hydrocarbons by rational design of MOF‐based composites.展开更多
Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g...Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.展开更多
Electrochemical CO_(2)reduction to value-added fuels and chemicals is recognized as a promising strategy to alleviate energy shortages and global warming owing to its high efficiency and economic feasibility.Recently,...Electrochemical CO_(2)reduction to value-added fuels and chemicals is recognized as a promising strategy to alleviate energy shortages and global warming owing to its high efficiency and economic feasibility.Recently,understanding the activity origin,selectivity regulation,and reaction mechanisms of CO_(2)reduction reactions(CO_(2)RRs)has become the focus of efficient electrocatalyst design.Polyoxometalates(POMs),a unique class of nanosized metal-oxo clusters,are promising candidates for the development of efficient CO_(2)RR electrocatalysts and,owing to their well-defined structure,remarkable electron/proton storage and transfer ability,and capacities for adsorption and activation of CO_(2),are ideal models for investigating the activity origin and reaction mechanisms of CO_(2)RR electrocatalysts.In this review,we focus on the activity origin and mechanism of CO_(2)RRs and survey recent advances that were achieved by employing POMs in electrocatalytic CO_(2)RRs.We highlight the significant roles of POMs in the electrocatalytic CO_(2)RR process and the main factors influencing selectivity regulation and catalytic CO_(2)RR performance,including the electrolyte,electron-transfer process,and surface characteristics.Finally,we offer a perspective of the advantages and future challenges of POM-based materials in electrocatalytic CO_(2)reduction that could inform new advancements in this promising research field.展开更多
The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system co...The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system composed of a metalloporphyrin-functionalized TiO2 photocathode and BiVO4 photoanode can efficiently transform CO2 and water to methanol, which is accompanied by oxygen release. This photoelectrocatalytic system smoothly produces methanol at a rate of 55.5 μM h^–1 cm^– 2, with 0.6 V being the membrane voltage in plants. The production of hydrogen can also be observed when the voltage is more than 0.75 V, due to photocatalysis. Our results evidently indicate that the molecules of metalloporphyrin attached onto the surface of anatase (TiO2) behave as chlorophyll, NADP, and Calvin cycle in plant cells.展开更多
Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable el...Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.展开更多
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
基金supported by the National Natural Science Foundation of China(21575134,21275136)
文摘The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal catalysts to substitute Pt-based catalysts has become a critical issue in the ORR research field, As an earth-abundant element, the use of Cu to catalyze the ORR has been explored with the ultimate target of finding a replacement for Pt-based catalysts in fuel cells. This review mainly focuses on recent research progress with Cu-based ORR catalysts and aims to aid readers' understanding of the status of development in this field. The review begins with a general update on the state of knowledge pertaining to ORR, This is followed by an overview of recent research based on Cu nanomaterial catalysts, which comprises Cu complexes, compounds, and other structures. Charting the development of Cu-based ORR catalysts shows that designing Cu-based materials to mimic active enzymes is an effective approach for ORR catalysis. By collecting recent developments in the field, we hope that this review will promote further development of Cu-based ORR catalysts and their application in fuel cells.
基金supported by the Fundamental Research Funds for the Central Universities(DUT15RC(3)001,DUT15ZD225)the Program for Liao-ning Excellent Talents in University(LR2015014)+1 种基金the Liaoning BaiQianWan Talents Program(201519)Dalian Excellent Young Scientific and Technological Talents(2015R006)
文摘Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode.
基金supported by the international cooperation project(21311140166) of the National Natural Science Foundation of China and Japan Science Promotion Society(NNSFC-JSPS),NNSFC(21273222)Shandong Province Science and Technology Program(2014GGX102020)+1 种基金Higher Educational Science and Technology Program(J14LC08)the Doctoral Scientific Research Start-Up Foundation of Qufu Normal University,and the Science and Technology Program of Qufu Normal University(xkj201508)~~
文摘Highly dispersed metals,metal oxides and their composites on substrates have received considerable interest in catalysis and lithium-ion batteries,because of their superior properties compared with their single-component counterparts.In this review,we introduce the properties of supercritical carbon dioxide(scCO2) expanded ethanol,such as low viscosity,near-zero surface tension and high diffusivity.We discuss the deposition procedure and formation mechanism of carbon-based composites in scCO2-expanded ethanol.This method has been used to fabricate several carbon-based composites,such as metal and metal oxide composites deposited on zero-dimensional colloidal carbon,one-dimensional carbon nanotubes,two-dimensional graphene,and three-dimensional hierarchical porous carbon.These materials and their performance as anodic materials for lithium-ion batteries will also be reviewed.
文摘Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.
文摘A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.
基金supported by Thousand Talents Program of Chinathe National Natural Science Foundation of China (21101170,21573139,and 21773146)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Shaanxi Normal University
文摘Water oxidation is significant in both natural and artificial photosynthesis.In nature,water oxidation occurs at the oxygen‐evolving center of photosystem II,and leads to the generation of oxygen,protons,and electrons.The last two are used for fixation of carbon dioxide to give carbohydrates.In artificial processes,the coupling of water oxidation to evolve O2and water reduction to evolve H2is known as water splitting,which is an attractive method for solar energy conversion and storage.Because water oxidation is a thermodynamically uphill reaction and is kinetically slow,this reaction causes a bottleneck in large‐scale water splitting.As a consequence,the development of new and efficient water oxidation catalysts(WOCs)has attracted extensive attention.Recent efforts have identified a variety of mononuclear earth‐abundant transition‐metal complexes as active and stable molecular WOCs.This review article summarizes recent progress in research on mononuclear catalysts that are based on first‐row transition‐metal elements,namely manganese,iron,cobalt,nickel,and copper.Particular attention is paid to catalytic mechanisms and the key O?O bond formation steps.This information is critical for designing new catalysts that are highly efficient and stable.
文摘Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is a result of the sluggish oxygen reduction reaction(ORR)kinetics,is a significant source of energy loss and reduces fuel cell efficiency.Further,the need to use Pt in commercial Pt/C cathodes has restricted their large‐scale application in fuel cells because of its high cost and poor durability.Thus,improvements in the activity and durability of Pt‐based catalyst are required to reduce the amount of Pt required and,thus,costs,while increasing the ORR rate and fuel cell power density and promoting widespread PEMFC commercialization.In recent years,atomically ordered Pt‐based intermetallic nanocrystals have received tremendous attention owing to their excellent activity and stability for the ORR.Therefore,in this review,we first introduce the formation of intermetallic compounds from the perspective of thermodynamics and kinetics to lay a theoretical foundation for the design of these compounds.In addition,optimization strategies for Pt‐based ordered intermetallic catalysts are summarized in terms of the catalyst composition,size,and morphology.Finally,we conclude with a discussion of the current challenges and future prospects of Pt‐based ordered alloys.This review is designed to help readers gain insights into the recent developments in and rational design of Pt‐based intermetallic nanocrystals for the ORR and encourage research that will enable the commercialization of PEMFCs.
文摘Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catalysts such as limited conductivity and the necessity of nanostructuring.Herein,we present the synthesis,characterization and electrocatalytic investigation of ternary metal-rich sulfide composites FexCo9-xS8 as well as Ni_(y)Co_(9-y)S_(8)(x=y=0-4.5),which possess pentlandite-type structures.In this study,we show a stepwise alteration of the binary cobalt pentlandite Co9S8 and report on the replacement of cobalt with up to 4.5 equivalents of either iron or nickel.These altered pentlandite composites facilitate the proton reduction in acidic media at different temperatures.We furthermore show that the stoichiometric variation has a decisive influence on the electrochemical activation/deactivation behavior of the catalysts under reductive electrocatalytic conditions.Here,Co-deficient composites display an improved HER performance in contrast to Co_(9)S_(8).Notably,Ni/Co compounds generally tend to show higher catalytic activities towards HER than their respective Fe/Co compounds.
基金supported by the National Natural Science Foundation of China (21477050, 21522603, 21706101)the Henry Fok Education Foundation (141068)+2 种基金Six Talents Peak Project in Jiangsu Province (XCL-025)the Chinese-German Cooperation Research Project (GZ1091)the China Postdoctoral Foundation (2017M611731)~~
文摘The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of this technology as it enables the improvement of developmental efficiency and selectivity by chemical optimization of morphology and electronic structure. Transition metal-based catalysts are particularly appealing as their d bands have valence electrons which are close to the Fermi level and hence overcome the intrinsic activation barriers and reaction kinetics. The study of Mo, Fe, Co, and Ni-based materials in particular is a very recent research subject that offers various possibilities in electrochemical CO2 reduction applications. Herein, we summarize the recent re-search progress of Mo, Fe, Co, and Ni-based catalysts and their catalytic behavior in electrochemical CO〈sub〉2 reduction. We particularly focus on the relationship between structures and properties, with examples of the key features accounting for the high efficiency and selectivity of the CO2 reduction process. The most significant experimental and theoretical improvements are highlighted. Finally, we concisely discuss the scientific challenges and opportunities for transition metal-based catalysts.
基金supported by the National Natural Science Foundation of China(21573083)the 1000 Young Talent(to Deli Wang)initiatory financial support from Huazhong University of Science and Technology(HUST)~~
文摘The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.
文摘Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon template into a melamine/Fe-salt mixture to inductively generate highly active Fe-N_x sites for ORR. Using 57 Fe M?sbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we studied the structural composition of the Fe and N co-doped carbon catalysts.Interestingly, the results showed that this system not only converted inactive Fe and Fe-carbides into active Fe-N_4 and other Fe-nitrides, but also improved their intrinsic activities.
文摘Oxygen evolution from water driven by electrocatalysis or photocatalysis poses a significant challenge as it requires the use of efficient electro-/photo-catalysts to drive the four-electron oxygen evolution reaction(OER).Herein,we report the development of an effective strategy for the in situ chemical transformation of Fe-based bimetallic MIL-88 metal-organic frameworks(MOFs)into corresponding bimetallic hydroxides,which are composed of amorphous ultrasmall nanoparticles and afford an abundance of catalytically active sites.Optimized MOF-derived NiFe-OH-0.75 catalyst coated on glassy carbon electrodes achieved a current density of 10 mA cm^(-2)in the electrocatalytic OER with a small overpotential of 270 mV,which could be decreased to 235 mV when loading the catalysts on a nickel foam substrate.Moreover,these MOF-derived Fe-based bimetallic hydroxides can be used as efficient cocatalysts when combined with suitable photosensitizers for photocatalytic water oxidation.
文摘To facilitate the electrochemical CO_(2) reduction(ECR)to fuels and valuable chemicals,the development of active,low cost,and selective catalysts is crucial.We report a novel ECR catalyst consisting of CuO nanoparticles with sizes ranging from 1.4 to 3.3 nm anchored on Cu metal‐organic framework(Cu‐MOF)nanosheets obtained through a one‐step facile solvothermal method.The nanocomposites provide multiple sites for efficient ambient ECR,delivering an average C_(2)H_(4) faradaic efficiency(FE)of~50.0%at–1.1 V(referred to the reversible hydrogen electrode)in 0.1 mol/L aqueous KHCO_(3) using a two‐compartment cell,in stark contrast to a C_(2)H_(4) FE of 25.5%and 37.6%over individual CuO and Cu‐MOF respectively,also surpassing most newly reported Cu‐based materials under similar cathodic voltages.The C_(2)H_(4) FE remains at over 45.0%even after 10.0 h of successive polarization.Also,a~7.0 mA cm^(–2) C_(2)H_(4) partial geometric current density and 27.7%half‐cell C_(2)H_(4) power conversion efficiency are achieved.The good electrocatalytic performance can be attributed to the interface between CuO and Cu‐MOF,with accessible metallic moieties and the unique two‐dimensional structure of the Cu‐MOF enhancing the adsorption and activation of CO_(2) molecules.This finding offers a simple avenue to upgrading CO_(2) to value‐added hydrocarbons by rational design of MOF‐based composites.
文摘Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.
文摘Electrochemical CO_(2)reduction to value-added fuels and chemicals is recognized as a promising strategy to alleviate energy shortages and global warming owing to its high efficiency and economic feasibility.Recently,understanding the activity origin,selectivity regulation,and reaction mechanisms of CO_(2)reduction reactions(CO_(2)RRs)has become the focus of efficient electrocatalyst design.Polyoxometalates(POMs),a unique class of nanosized metal-oxo clusters,are promising candidates for the development of efficient CO_(2)RR electrocatalysts and,owing to their well-defined structure,remarkable electron/proton storage and transfer ability,and capacities for adsorption and activation of CO_(2),are ideal models for investigating the activity origin and reaction mechanisms of CO_(2)RR electrocatalysts.In this review,we focus on the activity origin and mechanism of CO_(2)RRs and survey recent advances that were achieved by employing POMs in electrocatalytic CO_(2)RRs.We highlight the significant roles of POMs in the electrocatalytic CO_(2)RR process and the main factors influencing selectivity regulation and catalytic CO_(2)RR performance,including the electrolyte,electron-transfer process,and surface characteristics.Finally,we offer a perspective of the advantages and future challenges of POM-based materials in electrocatalytic CO_(2)reduction that could inform new advancements in this promising research field.
基金funded by the Natural Science Foundation of Gansu Province(17JR5RA212)the State Key Laboratory of Coal Conversion(J19-20-913-1)~~
文摘The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system composed of a metalloporphyrin-functionalized TiO2 photocathode and BiVO4 photoanode can efficiently transform CO2 and water to methanol, which is accompanied by oxygen release. This photoelectrocatalytic system smoothly produces methanol at a rate of 55.5 μM h^–1 cm^– 2, with 0.6 V being the membrane voltage in plants. The production of hydrogen can also be observed when the voltage is more than 0.75 V, due to photocatalysis. Our results evidently indicate that the molecules of metalloporphyrin attached onto the surface of anatase (TiO2) behave as chlorophyll, NADP, and Calvin cycle in plant cells.
文摘Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.