期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
单壁纳米碳管的纯化及表征 被引量:5
1
作者 王新庆 王淼 +2 位作者 李振华 朱海滨 王凤飞 《物理化学学报》 SCIE CAS CSCD 北大核心 2003年第5期428-431,共4页
利用微孔膜及空气氧化法逐步除去电弧放电法制备的单壁纳米碳管(SWCNTs)中的金属催化剂粒子、碳纳米粒子、无定形碳等杂质,并利用热重分析(TGA)、高分辨透射电子显微镜(HRTEM)及拉曼(Raman)光谱,对每一步得到的产物进行分析表征.实验证... 利用微孔膜及空气氧化法逐步除去电弧放电法制备的单壁纳米碳管(SWCNTs)中的金属催化剂粒子、碳纳米粒子、无定形碳等杂质,并利用热重分析(TGA)、高分辨透射电子显微镜(HRTEM)及拉曼(Raman)光谱,对每一步得到的产物进行分析表征.实验证明,该方法对单壁纳米碳管的纯化是比较有效的,可以得到纯度在90%以上的单壁纳米碳管. 展开更多
关键词 单壁纳米碳管 纯化 表征 微孔膜 空气氧化法 电弧放电法 金属催化剂粒子 碳纳米粒子 无定形碳 杂质 热重分析 拉曼光谱
下载PDF
Correlation between catalytic activity of supported gold catalysts for carbon monoxide oxidation and metal–oxygen binding energy of the support metal oxides 被引量:3
2
作者 Takashi Fujita Masanori Horikawa +2 位作者 Takashi Takei Tom Murayama Masatake Haruta 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1651-1655,共5页
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id... The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs. 展开更多
关键词 Metal oxide-supported gold nanoparticle catalyst Support effects Carbon monoxide oxidation Volcano-like correlation Metal-oxygen binding energy
下载PDF
AgAuPd/meso-Co_3O_4: High-performance catalysts for methanol oxidation
3
作者 Jun Yang Yuxi Liu +4 位作者 Jiguang Deng Xingtian Zhao Kunfeng Zhang Zhuo Han Hongxing Dai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期837-848,共12页
The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemic... The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4. 展开更多
关键词 Volatile organic compound Mesoporous cobalt oxide Supported noble metal catalyst AgAuPd alloy nanoparticle Methanol oxidation
下载PDF
Development of Novel Supported Gold Catalysts: A Materials Perspective 被引量:9
4
作者 Zhen Ma Sheng Dai 《Nano Research》 SCIE EI CAS CSCD 2011年第1期3-32,共30页
Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by s... Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO2), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO2 and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research. 展开更多
关键词 GOLD NANOPARTICLES catalyst design catalyst support FUNCTIONALIZATION PROMOTION CO oxidation
原文传递
Highly dispersed L1_(0)-PtZn intermetallic catalyst for efficient oxygen reduction 被引量:6
5
作者 Tuo Zhao Ergui Luo +4 位作者 Yang Li Xian Wang Changpeng Liu Wei Xing Junjie Ge 《Science China Materials》 SCIE EI CAS CSCD 2021年第7期1671-1678,共8页
Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction react... Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction reaction(ORR),in which a Zn-rich metal–organic framework(MOF)is used as an in situ generated support to confine the growth of PtZn particles.Despite requiring high-temperature treatment,the intermetallic L1_(0)-PtZn particles exhibit a small mean size of3.95 nm,which confers the catalysts with high electrochemical active surface area(81.9 m^(2)g_(Pt)^(-1))and atomic utilization.The Pt electron structure and binding strength between Pt and oxygen intermediates are optimized through ligand effect and compressive strain.These advantages result in ORR mass activity and specific activity of 0.926 A mg_(Pt)^(-1) and 1.13 mA cm^(-2),respectively,which are 5.4 and 4.0 times those of commercial Pt/C.The stable L10structure provides the catalysts with superb durability;only a halfwave potential loss of 11 mV is observed after 30,000 cycles of accelerated stress tests,through which the structure evolves into a more stable PtZn-Pt core-shell structure.Therefore,the development of a Zn-based MOF as a catalyst support is demonstrated,providing a synergy strategy to prepare highly dispersed intermetallic alloys with high activity and durability. 展开更多
关键词 L1_(0)-PtZn intermetallic catalyst Zn vapor protect confinement effect morphological evolution ORR
原文传递
Bimetallic Pd-Ni core-shell nanoparticles catalysts for the Suzuki reaction 被引量:11
6
作者 Ji Xiang Peng Li Hanbao Chong Li Feng Fangyu Fu Zhuang Wang Shilin Zhang Manzhou Zhu 《Nano Research》 SCIE EI CAS CSCD 2014年第9期1337-1343,共7页
A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2... A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2 (acac = acetyl- acetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures. 展开更多
关键词 PD NI bimetallic NPs catalytic activities
原文传递
Easily fabricated and recyclable Pd&Cu@Al catalyst for gram-scale phosphine-free Heck reactions with high TON 被引量:3
7
作者 Dongliang Zhang Zheng Wei Lei Yu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第19期1325-1330,共6页
A unique Pd&Cu@Al catalyst was easily fabricated just by immersing commercial aluminum foil in a mixed xylene solution of PdC12 and CuCl2. The catalyst fabrication process led to aluminum oxide coatings in situ, whic... A unique Pd&Cu@Al catalyst was easily fabricated just by immersing commercial aluminum foil in a mixed xylene solution of PdC12 and CuCl2. The catalyst fabrication process led to aluminum oxide coatings in situ, which supported the metal nanoparticles and enhanced their catalytic activities for the phosphine-free Heck reaction of awl halides and styrenes with high turnover number (TON) up to 3.9×10^5. The reaction can be scaled up to at least 100 mmol and has been applied in modification of drug Lapatinib's intermediate with low metal residue. This novel catalyst is of good application potential in industrial production because it was extremely easy to be recycled, in regardless of the generation of the insoluble impurities or tars during the reaction processes. 展开更多
关键词 Catalyst recoveryPalladiumnanoparticlesAluminum oxidePhosphine-freeSustainable chemistryHeck reaction
原文传递
Carbon-CeO interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions 被引量:2
8
作者 Changjin Xu Yue Zhang +3 位作者 Jing Chen Song Li Ya-Wen Zhang Gaowu Qin 《Science China Materials》 SCIE EI CSCD 2021年第1期128-136,共9页
Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during hars... Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts. 展开更多
关键词 catalyst stability Pt nanocatalyst interface confinement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部