期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
GaAs集成电路的金属化缺陷失效定位研究
1
作者 刘丽媛 郑林挺 +3 位作者 石高明 林晓玲 来萍 陈选龙 《固体电子学研究与进展》 CAS 北大核心 2022年第2期146-149,162,共5页
介绍了一种针对砷化镓集成电路(GaAs IC)金属化缺陷的失效定位方法。首先分析了GaAs IC不同金属化结构(如金属化互连、MIM结构、肖特基接触电极)的光发射显微及光致电阻变化(EMMI/OBIRCH)效应,再结合典型的电路原理,得到可能的电路缺陷... 介绍了一种针对砷化镓集成电路(GaAs IC)金属化缺陷的失效定位方法。首先分析了GaAs IC不同金属化结构(如金属化互连、MIM结构、肖特基接触电极)的光发射显微及光致电阻变化(EMMI/OBIRCH)效应,再结合典型的电路原理,得到可能的电路缺陷模型与EMMI/OBIRCH结果之间的对应关系,从而快速、准确地由EMMI/OBIRCH图像得到金属化开路或者短路失效位置。案例研究结果表明,该方法可用于GaAs IC的失效定位,例如放大器、高速数字驱动电路、射频开关等,适用的失效模式包括基极金属化台阶断裂、源极金属通孔开裂形成的开路或MIM金属化桥连形成的低阻等。 展开更多
关键词 GAAS集成电路 金属化缺陷 光发射显微镜 光致电阻变化 失效分析
下载PDF
基于失效物理的集成电路故障定位方法 被引量:9
2
作者 陈选龙 李洁森 +2 位作者 黎恩良 刘丽媛 方建明 《半导体技术》 CAS 北大核心 2019年第4期307-312,共6页
超大规模集成电路后道工艺(BEOL)中的失效日益增多,例如多层金属化布线桥连、划伤,栅氧化层的静电放电(ESD)损伤、裂纹等失效模式,由于失效点本身尺寸小加上电路规模大,使得失效分析难度增加。为了能够对故障点进行快速、精确定位,提出... 超大规模集成电路后道工艺(BEOL)中的失效日益增多,例如多层金属化布线桥连、划伤,栅氧化层的静电放电(ESD)损伤、裂纹等失效模式,由于失效点本身尺寸小加上电路规模大,使得失效分析难度增加。为了能够对故障点进行快速、精确定位,提出了基于失效物理的集成电路故障定位方法。根据CMOS反相器电路的失效模式提出了4种主要故障模型:栅极电平连接至电源(地)、栅极连接的金属化高阻或者开路、氧化层漏电和pn结漏电。结合故障模型产生的光发射显微镜(PEM)和光致电阻变化(OBIRCH)现象的特征形貌和位置特点,进行合理的失效物理假设。结果表明,基于该方法可对通孔缺陷、多层金属化布线损伤以及栅氧化层静电放电损伤失效进行有效的定位,快速缩小失效范围,提高失效分析的成功率。 展开更多
关键词 集成电路 失效物理 失效分析 金属化缺陷 光发射显微镜
下载PDF
Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway 被引量:8
3
作者 Minglu Sun Wendong Zhang +2 位作者 Yanjuan Sun Yuxin Zhang Fan Dong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期826-836,共11页
Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advanta... Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advantages of SPR in metallic Bi and artificial defects to cooperatively enhance the photocatalytic performance of BiOI.The catalysts were prepared by partial reduction of BiOI to form Bi@defective BiOI,which showed highly enhanced visible photocatalytic activity for NOx removal.The effects of reductant quantity on the photocatalytic performance of Bi@defective BiOI were investigated.The as-prepared photocatalyst(Bi/BiOI-2)using 2 mmol of reductant NaBH4 showed the most efficient visible light photocatalytic activity.This enhanced activity can be ascribed to the synergistic effects of metallic Bi and oxygen vacancies.The electrons from the valence band tend to accumulate at vacancy states;therefore,the increased charge density would cause the adsorbed oxygen to transform more easily into superoxide radicals and,further,into hydroxyl radicals.These radicals are the main active species that oxidize NO into final products.The SPR effect of elemental Bi enables the improvement of visible light absorption efficiency and the promotion of charge carrier separation,which are crucial factors in boosting photocatalysis.NO adsorption and reaction processes on Bi/BiOI-2 were dynamically monitored by in situ infrared spectroscopy(FT-IR).The Bi/BiOI photocatalysis mechanism co-mediated by elemental Bi and oxygen vacancies was proposed based on the analysis of intermediate products and DFT calculations.This present work could provide new insights into the design of high-performance photocatalysts and understanding of the photocatalysis reaction mechanism for air-purification applications. 展开更多
关键词 Surface plasmon resonance Bi metal BiOI PHOTOCATALYSIS Oxygen vacancy Reaction mechanism
下载PDF
Defective high-entropy rocksalt oxide with enhanced metal‒oxygen covalency for electrocatalytic oxygen evolution 被引量:5
4
作者 Fangming Liu Meng Yu +3 位作者 Xiang Chen Jinhan Li Huanhuan Liu Fangyi Cheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期122-129,共8页
High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type ... High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity. 展开更多
关键词 High-entropy material Rocksalt oxide Oxygen evolution reaction Electrocatalyst Defect Metal-oxygen covalency
下载PDF
Boosting CO_(2) photoreduction by synergistic optimization of multiple processes through metal vacancy engineering
5
作者 Jinlong Wang Dongni Liu +3 位作者 Mingyang Li Xiaoyi Gu Shiqun Wu Jinlong Zhang 《Chinese Journal of Catalysis》 SCIE CAS 2024年第8期202-212,共11页
The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of ... The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts. 展开更多
关键词 Photocatalyst CO_(2) photoreduction Indium oxide Metal vacancy Defect
下载PDF
Phosphorus-doped MoS_(2) with sulfur vacancy defects for enhanced electrochemical water splitting 被引量:3
6
作者 Hongyao Xue Alan Meng +3 位作者 Chunjun Chen Hongyan Xue Zhenjiang Li Chuansheng Wang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期712-720,共9页
MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is una... MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications. 展开更多
关键词 molybdenum disulfide phosphorus doping sulfur vacancy defects overall water splitting electron redistribution density functional theory calculations
原文传递
Waste to wealth:Defect-rich Ni-incorporated spent LiFePO_(4)for efficient oxygen evolution reaction 被引量:7
7
作者 Baihua Cui Chang Liu +9 位作者 Jinfeng Zhang Jijun Lu Siliang Liu Fangshuai Chen Wei Zhou Guoyu Qian Zhi Wang Yida Deng Yanan Chen Wenbin Hu 《Science China Materials》 SCIE EI CAS CSCD 2021年第11期2710-2718,共9页
The development of efficient strategies to recycle lithium-ion battery(LIB)electrode materials is an important yet challenging goal for the sustainable management of battery waste.This work reports a facile and econom... The development of efficient strategies to recycle lithium-ion battery(LIB)electrode materials is an important yet challenging goal for the sustainable management of battery waste.This work reports a facile and economically efficient method to convert spent cathode material,LiFePO_(4),into a high-performance NiFe oxy/hydroxide catalyst for the oxygen evolution reaction(OER).Herein,Ni-LiFePO_(4)is synthesized via the wetness impregnation method and further evolves into defect-rich NiFe oxy/hydroxide nanosheets during the OER.The introduction of the Ni promoter together with in situ evolution strengthens the electronic interactions among the metal sites and creates an abundance of defects.Experimentally,the evolved Ni-LiFePO_(4)delivers a low overpotential of 285 mV at 10 mA cm-^(2)and a small Tafel slope of 45 mV dec^(-1),outperforming pristine LiFePO_(4)and is even superior to the benchmark catalyst RuO_(2).Density functional theory(DFT)calculations reveal that the introduction of Ni effectively activates Fe sites by optimizing the free energy of the*OOH intermediate and that the abundance of oxygen defects facilitates the oxygen desorption step,synergistically enhancing the OER performance of LiFePO_(4).As a green and versatile method,this is a new opportunity for the scalable fabrication of excellent electrocatalysts based on spent cathode materials. 展开更多
关键词 functional conversion spent cathode LIFEPO4 oxygen evolution reaction DFT calculation
原文传递
A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide 被引量:9
8
作者 Xuya Xiong Zhao Cai +10 位作者 Daojin Zhou Guoxin Zhang Qian Zhang Yin Jia Xinxuan Duan Qixian Xie Shibin Lai Tianhui Xie Yaping Li Xiaoming Sun Xue Duan 《Science China Materials》 SCIE EI CSCD 2018年第7期939-947,共9页
Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro... Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance. 展开更多
关键词 oxygen evolution reaction layered double hydroxide oxygen vacancy ELECTROCATALYSIS
原文传递
Electronic structure evolutions driven by oxygen vacancy in SrCoO3-x films
9
作者 赵佳丽 罗毅 +16 位作者 王嘉鸥 钱海杰 刘晨 何旭 张庆华 黄河意 张兵兵 李顺芳 郭尔佳 葛琛 杨铁莹 李晓龙 何萌 谷林 金奎娟 奎热西·依布拉欣 郭海中 《Science China Materials》 SCIE EI CSCD 2019年第8期1162-1168,共7页
Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalys... Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalysis and energy conversion. Here, we investigate the electronic structure of SrCoO3-x as a function of oxygen content(x). We found that the hybridization extent between Co 3d and O 2p increased with the reduction of oxygen vacancies. The valence band maximum of SrCoO2.5+δ has a typical O 2p characteristic. With further increasing oxygen content, the Co ions transform from a high spin Co3+ to an intermediate spin Co4+, resulting in a transition of SrCoO3-x from insulator to metal. Our results on the electronic structure evolution with the oxygen vacancies in SrCoO3-x not only illustrate a spin state transition of Co ions,but also indicate a perspective application in catalysis and energy field. 展开更多
关键词 oxygen vacancies SrCoO3-x electronic structure evolution resonant photoemission spectra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部