Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advanta...Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advantages of SPR in metallic Bi and artificial defects to cooperatively enhance the photocatalytic performance of BiOI.The catalysts were prepared by partial reduction of BiOI to form Bi@defective BiOI,which showed highly enhanced visible photocatalytic activity for NOx removal.The effects of reductant quantity on the photocatalytic performance of Bi@defective BiOI were investigated.The as-prepared photocatalyst(Bi/BiOI-2)using 2 mmol of reductant NaBH4 showed the most efficient visible light photocatalytic activity.This enhanced activity can be ascribed to the synergistic effects of metallic Bi and oxygen vacancies.The electrons from the valence band tend to accumulate at vacancy states;therefore,the increased charge density would cause the adsorbed oxygen to transform more easily into superoxide radicals and,further,into hydroxyl radicals.These radicals are the main active species that oxidize NO into final products.The SPR effect of elemental Bi enables the improvement of visible light absorption efficiency and the promotion of charge carrier separation,which are crucial factors in boosting photocatalysis.NO adsorption and reaction processes on Bi/BiOI-2 were dynamically monitored by in situ infrared spectroscopy(FT-IR).The Bi/BiOI photocatalysis mechanism co-mediated by elemental Bi and oxygen vacancies was proposed based on the analysis of intermediate products and DFT calculations.This present work could provide new insights into the design of high-performance photocatalysts and understanding of the photocatalysis reaction mechanism for air-purification applications.展开更多
High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type ...High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity.展开更多
The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of ...The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts.展开更多
MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is una...MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications.展开更多
The development of efficient strategies to recycle lithium-ion battery(LIB)electrode materials is an important yet challenging goal for the sustainable management of battery waste.This work reports a facile and econom...The development of efficient strategies to recycle lithium-ion battery(LIB)electrode materials is an important yet challenging goal for the sustainable management of battery waste.This work reports a facile and economically efficient method to convert spent cathode material,LiFePO_(4),into a high-performance NiFe oxy/hydroxide catalyst for the oxygen evolution reaction(OER).Herein,Ni-LiFePO_(4)is synthesized via the wetness impregnation method and further evolves into defect-rich NiFe oxy/hydroxide nanosheets during the OER.The introduction of the Ni promoter together with in situ evolution strengthens the electronic interactions among the metal sites and creates an abundance of defects.Experimentally,the evolved Ni-LiFePO_(4)delivers a low overpotential of 285 mV at 10 mA cm-^(2)and a small Tafel slope of 45 mV dec^(-1),outperforming pristine LiFePO_(4)and is even superior to the benchmark catalyst RuO_(2).Density functional theory(DFT)calculations reveal that the introduction of Ni effectively activates Fe sites by optimizing the free energy of the*OOH intermediate and that the abundance of oxygen defects facilitates the oxygen desorption step,synergistically enhancing the OER performance of LiFePO_(4).As a green and versatile method,this is a new opportunity for the scalable fabrication of excellent electrocatalysts based on spent cathode materials.展开更多
Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro...Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.展开更多
Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalys...Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalysis and energy conversion. Here, we investigate the electronic structure of SrCoO3-x as a function of oxygen content(x). We found that the hybridization extent between Co 3d and O 2p increased with the reduction of oxygen vacancies. The valence band maximum of SrCoO2.5+δ has a typical O 2p characteristic. With further increasing oxygen content, the Co ions transform from a high spin Co3+ to an intermediate spin Co4+, resulting in a transition of SrCoO3-x from insulator to metal. Our results on the electronic structure evolution with the oxygen vacancies in SrCoO3-x not only illustrate a spin state transition of Co ions,but also indicate a perspective application in catalysis and energy field.展开更多
基金supported by the National Natural Science Foundation of China(21501016,21777011 and 21822601)the National Key R&D Program of China(2016YFC02047)+2 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Key Natural Science Foundation of Chongqing(cstc2017jcyj BX0052)the National Ten Thousand Talent Program of China~~
文摘Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advantages of SPR in metallic Bi and artificial defects to cooperatively enhance the photocatalytic performance of BiOI.The catalysts were prepared by partial reduction of BiOI to form Bi@defective BiOI,which showed highly enhanced visible photocatalytic activity for NOx removal.The effects of reductant quantity on the photocatalytic performance of Bi@defective BiOI were investigated.The as-prepared photocatalyst(Bi/BiOI-2)using 2 mmol of reductant NaBH4 showed the most efficient visible light photocatalytic activity.This enhanced activity can be ascribed to the synergistic effects of metallic Bi and oxygen vacancies.The electrons from the valence band tend to accumulate at vacancy states;therefore,the increased charge density would cause the adsorbed oxygen to transform more easily into superoxide radicals and,further,into hydroxyl radicals.These radicals are the main active species that oxidize NO into final products.The SPR effect of elemental Bi enables the improvement of visible light absorption efficiency and the promotion of charge carrier separation,which are crucial factors in boosting photocatalysis.NO adsorption and reaction processes on Bi/BiOI-2 were dynamically monitored by in situ infrared spectroscopy(FT-IR).The Bi/BiOI photocatalysis mechanism co-mediated by elemental Bi and oxygen vacancies was proposed based on the analysis of intermediate products and DFT calculations.This present work could provide new insights into the design of high-performance photocatalysts and understanding of the photocatalysis reaction mechanism for air-purification applications.
文摘High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity.
文摘The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts.
基金supported by the National Natural Science Foundation of China(52072196)the Major Basic Research Program of the Natural Science Foundation of Shandong Province(ZR2020ZD09)。
文摘MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications.
基金the National Natural Science Foundation of China(91963113)。
文摘The development of efficient strategies to recycle lithium-ion battery(LIB)electrode materials is an important yet challenging goal for the sustainable management of battery waste.This work reports a facile and economically efficient method to convert spent cathode material,LiFePO_(4),into a high-performance NiFe oxy/hydroxide catalyst for the oxygen evolution reaction(OER).Herein,Ni-LiFePO_(4)is synthesized via the wetness impregnation method and further evolves into defect-rich NiFe oxy/hydroxide nanosheets during the OER.The introduction of the Ni promoter together with in situ evolution strengthens the electronic interactions among the metal sites and creates an abundance of defects.Experimentally,the evolved Ni-LiFePO_(4)delivers a low overpotential of 285 mV at 10 mA cm-^(2)and a small Tafel slope of 45 mV dec^(-1),outperforming pristine LiFePO_(4)and is even superior to the benchmark catalyst RuO_(2).Density functional theory(DFT)calculations reveal that the introduction of Ni effectively activates Fe sites by optimizing the free energy of the*OOH intermediate and that the abundance of oxygen defects facilitates the oxygen desorption step,synergistically enhancing the OER performance of LiFePO_(4).As a green and versatile method,this is a new opportunity for the scalable fabrication of excellent electrocatalysts based on spent cathode materials.
基金supported by the National Natural Science Foundation of China,National Key Research and Development Project (2016YFC0801302, 2016YFF0204402)the Program for Changjiang Scholars and Innovative Research Team in the University+2 种基金the Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Financethe Ministry of Education of China
文摘Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.
基金supported by the National Key R&D program of China(2016YFA0401002)the National Natural Science Foundation of China(11574365,11474349 and 11375228)
文摘Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalysis and energy conversion. Here, we investigate the electronic structure of SrCoO3-x as a function of oxygen content(x). We found that the hybridization extent between Co 3d and O 2p increased with the reduction of oxygen vacancies. The valence band maximum of SrCoO2.5+δ has a typical O 2p characteristic. With further increasing oxygen content, the Co ions transform from a high spin Co3+ to an intermediate spin Co4+, resulting in a transition of SrCoO3-x from insulator to metal. Our results on the electronic structure evolution with the oxygen vacancies in SrCoO3-x not only illustrate a spin state transition of Co ions,but also indicate a perspective application in catalysis and energy field.