In order to investigate the effects of pockets in the porthole die on the metal flow,temperature at the die bearing exit and the extrusion load were contrasted with the traditional die design without the pockets in th...In order to investigate the effects of pockets in the porthole die on the metal flow,temperature at the die bearing exit and the extrusion load were contrasted with the traditional die design without the pockets in the lower die.Two different multi-hole porthole dies with and without pockets in lower die were designed.And the extrusion process was simulated based on the commercial software DEFORM-3D.The simulation results show that the pockets could be used to effectively adjust the metal flow and especially benefit to the metal flow under the legs.In addition,the maximum temperature at the die bearing and the peak extrusion load decrease,which indicates the possibility of increasing the extrusion speed and productivity.展开更多
In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A serie...In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization.展开更多
The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flangin...The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flanging process parameters with considerations of the multiple response (the average flanging height, regular flanging and maximum strain) is introduced. Various flanging parameters, such as the blank inner radius rb, blank inner width B0, are considered. An orthogonal array is used for the experimental design. Multiple response values are obtained using finite element analysis (FEA). Optimal process parameters are determined by the grey relational grade obtained from the grey relational analysis for multi-performance characteristics (flanging height, regular flanging and maximum strain). Analysis of variance (ANOVA) for the grey relational grade is implemented. The results showed good agreement with the experiment result. Grey relational analysis can be applied in multiple response optimi-zation designs.展开更多
基金Project(2007BAE38B00) supported by the National Key Technology R&D Program in the 11th Five Year Plan of China
文摘In order to investigate the effects of pockets in the porthole die on the metal flow,temperature at the die bearing exit and the extrusion load were contrasted with the traditional die design without the pockets in the lower die.Two different multi-hole porthole dies with and without pockets in lower die were designed.And the extrusion process was simulated based on the commercial software DEFORM-3D.The simulation results show that the pockets could be used to effectively adjust the metal flow and especially benefit to the metal flow under the legs.In addition,the maximum temperature at the die bearing and the peak extrusion load decrease,which indicates the possibility of increasing the extrusion speed and productivity.
基金Projects(11072056, 10772061) supported by the National Natural Science Foundation of ChinaProject(A200907) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(20092322120001) supported by the PhD Programs Foundations of Ministry of Education of China
文摘In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization.
基金Project (No. 50475020) supported by the National Natural ScienceFoundation of China
文摘The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flanging process parameters with considerations of the multiple response (the average flanging height, regular flanging and maximum strain) is introduced. Various flanging parameters, such as the blank inner radius rb, blank inner width B0, are considered. An orthogonal array is used for the experimental design. Multiple response values are obtained using finite element analysis (FEA). Optimal process parameters are determined by the grey relational grade obtained from the grey relational analysis for multi-performance characteristics (flanging height, regular flanging and maximum strain). Analysis of variance (ANOVA) for the grey relational grade is implemented. The results showed good agreement with the experiment result. Grey relational analysis can be applied in multiple response optimi-zation designs.