A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher t...A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.展开更多
Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.Howe...Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.However,the fabrication of a conductive-nanomaterial-incorporated hydrogel with high performance is a great challenge because of the easy aggregation nature of conductive nanomaterials making processing difficult.Here,we report a kind of adhesive aero-hydrogel hybrid conductor(AAHC)with stretchable,adhesive and anti-bacteria properties by in situ formation of a hydrogel network in the aerogel-silver nanowires(AgNWs)assembly.The AgNWs with good conductivity are wellintegrated on the inner-surface of shape-memory chitosan aerogel,which created a conductive framework to allow hydrogel back-filling.Reinforcement by the aerogel-silver makes the hybrid hydrogel tough and stretchable.Functional groups from the hydrogel allow strong adhesion to wet tissues through molecular stitches.The inherent bacteria-killing ability of silver ions endows the conductive hydrogel with excellent anti-bacteria performance.The proposed facile strategy of aerogel-assisted assembly of metal nanomaterials with hydrogel opens a new route to incorporate functional nanoscale building blocks into hydrogels.展开更多
文摘A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.
基金the National Natural Science Foundation of China(51732011,51702310,21431006,and 21761132008)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(21521001)+2 种基金the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-SLH036)the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(2015HSC-UE007)Anhui Provincial Natural Science Foundation(1808085ME115)。
文摘Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.However,the fabrication of a conductive-nanomaterial-incorporated hydrogel with high performance is a great challenge because of the easy aggregation nature of conductive nanomaterials making processing difficult.Here,we report a kind of adhesive aero-hydrogel hybrid conductor(AAHC)with stretchable,adhesive and anti-bacteria properties by in situ formation of a hydrogel network in the aerogel-silver nanowires(AgNWs)assembly.The AgNWs with good conductivity are wellintegrated on the inner-surface of shape-memory chitosan aerogel,which created a conductive framework to allow hydrogel back-filling.Reinforcement by the aerogel-silver makes the hybrid hydrogel tough and stretchable.Functional groups from the hydrogel allow strong adhesion to wet tissues through molecular stitches.The inherent bacteria-killing ability of silver ions endows the conductive hydrogel with excellent anti-bacteria performance.The proposed facile strategy of aerogel-assisted assembly of metal nanomaterials with hydrogel opens a new route to incorporate functional nanoscale building blocks into hydrogels.