We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiatio...We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiation induced periodic patterns of precipitation because polar molecules vibrate and rotate in an electromagnetic field. For example, the number of patterns increased by the irradiation. Accordingly, microwave irradiation nonlinearly accelerated the diffusion of ionic molecules.展开更多
The present work is concerned with the voltammetric application of unmodified tricresyl phosphate carbon paste electrode (TCP-CPE) and in situ bismuth-film modified tricresyl phosphate-based carbon paste electrode ...The present work is concerned with the voltammetric application of unmodified tricresyl phosphate carbon paste electrode (TCP-CPE) and in situ bismuth-film modified tricresyl phosphate-based carbon paste electrode (BiF-TCP-CPE). The TCP-CPE was examined with the main objective of using it for the differential pulse voltammetric analysis of some neonicotinoid insecticides in aqueous Britton-Robinson buffer solution pH 7.0 as supporting electrolyte. After comparing the performance of the TCP-CPE with that of silicone oil carbon paste electrode, quantitative analysis of imidacloprid, thiamethoxam and clothianidin was performed in model solutions and real samples (river water and commercial insecticide formulations). The in situ prepared BiF-TCP-CPE was tested for a simultaneous detection of selected heavy metal ions (Cd^2+ and Pb^2+) at a μg/dm^3 concentration level, using square wave anodic stripping voltammetric technique. The influence of different electrochemical pretreatments of the working electrode on the bismuth deposition and analyte signals were investigated. Film formation was studied at untreated, pre-cathodized and pre-anodized TCP-CPEs in the acetic buffer solution pH 4.6, containing 1 μg/cm^3 Bi (III).展开更多
Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-org...Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-organic framework(bi-MOF)-derived nanocubic Swiss cheese-like carbons with a novel three-dimensional hierarchically porous structure(3D Co-N-C) prepared by utilizing cetyltrimethylammonium bromide(CTAB) as a structure-directing agent to control the formation of a nanocubic skeleton, and silica spheres as a template to form a mesoporous structure. The elemental composition and chemical morphology of this material can be tuned through the Zn/Co ratio to optimize its ORR catalytic activity. The optimized 3D Co-N-C displays excellent ORR catalytic performance(half-wave potential as high as 0.754 V vs. reversible hydrogen electrode and diffusion-limiting current density of 5.576 mA cm^(-2)) in 0.01 mol L^(-1) phosphate-buffered saline(PBS electrolyte),showing it can compete with the commercial 20 wt% Pt/C catalysts. The catalytic capability and long-term durability of 3D Co-N-C as an air-filled cathode electrocatalyst in an MFC device are tested, showing that the 3D CoNC-MFC can reach a high power density of 1257 mW m^(-2) and provide a competitive voltage during a periodic feeding operation for 192 h;these values are much higher than those of the Pt/C-MFC.展开更多
文摘We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiation induced periodic patterns of precipitation because polar molecules vibrate and rotate in an electromagnetic field. For example, the number of patterns increased by the irradiation. Accordingly, microwave irradiation nonlinearly accelerated the diffusion of ionic molecules.
文摘The present work is concerned with the voltammetric application of unmodified tricresyl phosphate carbon paste electrode (TCP-CPE) and in situ bismuth-film modified tricresyl phosphate-based carbon paste electrode (BiF-TCP-CPE). The TCP-CPE was examined with the main objective of using it for the differential pulse voltammetric analysis of some neonicotinoid insecticides in aqueous Britton-Robinson buffer solution pH 7.0 as supporting electrolyte. After comparing the performance of the TCP-CPE with that of silicone oil carbon paste electrode, quantitative analysis of imidacloprid, thiamethoxam and clothianidin was performed in model solutions and real samples (river water and commercial insecticide formulations). The in situ prepared BiF-TCP-CPE was tested for a simultaneous detection of selected heavy metal ions (Cd^2+ and Pb^2+) at a μg/dm^3 concentration level, using square wave anodic stripping voltammetric technique. The influence of different electrochemical pretreatments of the working electrode on the bismuth deposition and analyte signals were investigated. Film formation was studied at untreated, pre-cathodized and pre-anodized TCP-CPEs in the acetic buffer solution pH 4.6, containing 1 μg/cm^3 Bi (III).
基金supported by the National Natural Science Foundation of China (51976143)the National Key Research and Development Program of China (2018YFA0702001)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-002)。
文摘Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-organic framework(bi-MOF)-derived nanocubic Swiss cheese-like carbons with a novel three-dimensional hierarchically porous structure(3D Co-N-C) prepared by utilizing cetyltrimethylammonium bromide(CTAB) as a structure-directing agent to control the formation of a nanocubic skeleton, and silica spheres as a template to form a mesoporous structure. The elemental composition and chemical morphology of this material can be tuned through the Zn/Co ratio to optimize its ORR catalytic activity. The optimized 3D Co-N-C displays excellent ORR catalytic performance(half-wave potential as high as 0.754 V vs. reversible hydrogen electrode and diffusion-limiting current density of 5.576 mA cm^(-2)) in 0.01 mol L^(-1) phosphate-buffered saline(PBS electrolyte),showing it can compete with the commercial 20 wt% Pt/C catalysts. The catalytic capability and long-term durability of 3D Co-N-C as an air-filled cathode electrocatalyst in an MFC device are tested, showing that the 3D CoNC-MFC can reach a high power density of 1257 mW m^(-2) and provide a competitive voltage during a periodic feeding operation for 192 h;these values are much higher than those of the Pt/C-MFC.