A modified rare-earth-metal catalyst system combined with quaternary ammonium salts(QASs) as cocatalysts was investigated in the alternating copolymerization of CO_2/propylene oxide(PO) to produce poly(propylene ...A modified rare-earth-metal catalyst system combined with quaternary ammonium salts(QASs) as cocatalysts was investigated in the alternating copolymerization of CO_2/propylene oxide(PO) to produce poly(propylene carbonate)(PPC). In the presence of ZnO/SiO_2, the ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst presented higher activity for CO_2/PO copolymerization, as well as a higher molecular weight of polycarbonate, while maintaining the high carbonate content originating from the neat ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst. In the presence of QASs bearing different halide anions(F., Cl., and Br.), the type of the halide anion had a strong influence on the activity of the catalyst for CO_2/PO alternating copolymerization. Only tetramethylammonium fluoride(TMAF) could promote the alternating copolymerization without increasing the by-product. Combined the ZnO/SiO_2 catalyst and TMAF, the catalytic activity for CO_2/PO polymerization increased dramatically compared to the basic ternary catalyst system. The improved catalyst system produced a polymer with a high carbonate unit level equivalent to that of the polycarbonate produced by the basic ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst system.展开更多
The effects of adding rare earth(RE) metals,such as Ce,Yb and Pr to Ni-S_2O_8^(2-)/ZrO_2-Al_2O_3(Ni-SZA) on the structure of catalysts as well as their isomerization performance were studied.The prepared catalysts wer...The effects of adding rare earth(RE) metals,such as Ce,Yb and Pr to Ni-S_2O_8^(2-)/ZrO_2-Al_2O_3(Ni-SZA) on the structure of catalysts as well as their isomerization performance were studied.The prepared catalysts were characterized by XRD,BET,FT-IR,Py-IR,and H_2-TPR,The results showed that the addition of RE metals can increase the strength and amounts of the acid sites,improve the redox properties of catalysts.The Yb-Ni-SZA catalyst showed the best redox properties,which could provide enough metallic sites.In addition,it provided the largest amounts of weak and moderately strong acid sites.Among RE metals modified Ni-SZA catalyst,Yb-Ni-SZA exhibited the highest isopentane yield of 61.7%at 160 °C.The optimum isomerization catalytic performance of the catalysts decreased in the order of Yb-Ni-SZA > Pr-Ni-SZA > Ni-SZA > Ce-Ni-SZA.展开更多
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry(2004-527)the State Key Laboratory of Coal Conversion(06-603)
基金supported by the Pujiang Talent Projects(16PJD016)~~
文摘A modified rare-earth-metal catalyst system combined with quaternary ammonium salts(QASs) as cocatalysts was investigated in the alternating copolymerization of CO_2/propylene oxide(PO) to produce poly(propylene carbonate)(PPC). In the presence of ZnO/SiO_2, the ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst presented higher activity for CO_2/PO copolymerization, as well as a higher molecular weight of polycarbonate, while maintaining the high carbonate content originating from the neat ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst. In the presence of QASs bearing different halide anions(F., Cl., and Br.), the type of the halide anion had a strong influence on the activity of the catalyst for CO_2/PO alternating copolymerization. Only tetramethylammonium fluoride(TMAF) could promote the alternating copolymerization without increasing the by-product. Combined the ZnO/SiO_2 catalyst and TMAF, the catalytic activity for CO_2/PO polymerization increased dramatically compared to the basic ternary catalyst system. The improved catalyst system produced a polymer with a high carbonate unit level equivalent to that of the polycarbonate produced by the basic ZnEt_2-glycerine-Y(CCl_3OO)_3 catalyst system.
基金Supported by the Technology Risk Innovation Foundation of China National Petroleum Corporation(07-06D-01-04-03-02)
文摘The effects of adding rare earth(RE) metals,such as Ce,Yb and Pr to Ni-S_2O_8^(2-)/ZrO_2-Al_2O_3(Ni-SZA) on the structure of catalysts as well as their isomerization performance were studied.The prepared catalysts were characterized by XRD,BET,FT-IR,Py-IR,and H_2-TPR,The results showed that the addition of RE metals can increase the strength and amounts of the acid sites,improve the redox properties of catalysts.The Yb-Ni-SZA catalyst showed the best redox properties,which could provide enough metallic sites.In addition,it provided the largest amounts of weak and moderately strong acid sites.Among RE metals modified Ni-SZA catalyst,Yb-Ni-SZA exhibited the highest isopentane yield of 61.7%at 160 °C.The optimum isomerization catalytic performance of the catalysts decreased in the order of Yb-Ni-SZA > Pr-Ni-SZA > Ni-SZA > Ce-Ni-SZA.