Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ...The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.展开更多
Uniformly distributed single layer of ZIF67-derived C3N4(ZIF67-C3N4)was synthesized and applied to the photocatalytic degradation of methylene blue(MB)under visible light.Results indicated that the obtained ZIF67-C3N4...Uniformly distributed single layer of ZIF67-derived C3N4(ZIF67-C3N4)was synthesized and applied to the photocatalytic degradation of methylene blue(MB)under visible light.Results indicated that the obtained ZIF67-C3N4 has a maximum specific surface area of 541.392 m^2/g,which is much larger than that of raw C3N4 of 97.291 m^2/g.The investigation of C3N4 amount involved in ZIF67-C3N4 on the photoactivity revealed that 2.57 g ZIF67 with 0.3 g C3N4,which named ZIF67-C3N4(0.3)exhibited superior photocatalytic activities.More than 90%of MB at 10 mg/L was degraded within 70 min with the addition of 0.01 g ZIF67-C3N4(0.3),while this time required for raw C3N4 was over 140 min.The effects of pH of solution,initial concentration of MB and dosage of C3N4 in ZIF67-C3N4 composites on the photocatalytic efficiency for MB degradation were also evaluated.Quenching experiments indicated that the photo-induced holes(h^+)and superoxide radicals(O2-·)were mainly responsible for MB degradation.It is anticipated that the insertion of ZIF67 nanoparticles not only increases the adsorption capacity of C3N4 but also promotes the generation and migration of the photo-induced active species.展开更多
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH...Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.展开更多
A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIB...A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.展开更多
Societa Nazionale Officine di Savigliano was a company specialized in railway constructions, metallic bridges and mechanical and electrical constructions. Between the end of the 19th century and the beginning of the 2...Societa Nazionale Officine di Savigliano was a company specialized in railway constructions, metallic bridges and mechanical and electrical constructions. Between the end of the 19th century and the beginning of the 20th century, the company became well known in Europe especially for metallic constructions, having built the majority of metal bridges in the north of Italy such as the famous Paderno bridge (1887-1889), one of the biggest arch bridge for the period. In the 1930s, the company built some interesting examples of steel frame buildings, applying the electrical welding technique, acquired in industrial constructions, to civil buildings. The steel frame was quite rare in Italian buildings, especially in the matter of civil constructions and Savigliano made an effort in modernizing the Italian construction system, through research and innovation. The paper will discuss some examples of Savigliano's works dating back to 1930, and in particular, it will present a specific example never studied before: the hangar at the Elmas military airport, in Cagliari (Sardinia). The building is worth mentioning for the innovations experimented, as the new welding technique allowed a series of improvements in the construction process.展开更多
Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scal...Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scale implementation of CO_(2)RR is severely hindered by the lack of high‐performance CO_(2)RR electrocatalysts.Heterogeneous molecular catalysts and metal‐organic framework with well‐defined structure and high tunability of the metal centers and ligands show great promise for CO_(2)RR in terms of both fundamental understanding and practical application.Here,structural and interfacial engineering of these well‐defined metal‐organic ensembles is summarized.This review starts from the fundamental electrochemistry of CO_(2)RR and its evaluation criteria,and then moves to the heterogeneous molecular catalysts and metal‐organic framework with emphasis on the engineering of metal centers and ligands,their interaction with supports,as well as in situ reconstruction of metal‐organic ensembles.Summary and outlook are present in the end,with the hope to inspire and provoke more genuine thinking on the design and fabrication of efficient CO_(2)RR electrocatalysts.展开更多
This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic ...This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.展开更多
Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH...Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH_(3)OH·3H_(2)O(2),and[Mn^(Ⅱ)_(4)Ni^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·2CH_(3)OH·2H_(2)O(3),have been successfully synthesized by using 4-[tri-(hydroxymethyl)methyl]pyridine(4-thmpyH_(3))as ligand.Crystal structure analyses show that compound 1 is a disk-like twelve nuclear[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)]0D cluster.Compounds 2 and 3 are isomorphic,and the decanuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]node in compound 2 can be seen as a hyper-tetrahedron of four coboundary cubic alkanes[Mn^(Ⅱ)Co^(Ⅱ)_(3)O_(4)],then each ten-nuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]is connected by six 4-thmpy^(3-)with six adjacent decanuclear clusters[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)],forming the NaCl-type 3D topological structure.Magnetic studies showed that there exist antiferromagnetic interactions between metal ions in 1-3.展开更多
The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding ...The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding the structural evolution of M-N-C as a function of ZIF pyrolysis temperature is important for realizing high performance catalysts.Herein,we report a detailed investigation of the evolution of Zn single atom catalyst sites during the pyrolysis of ZIF-8 at temperatures ranging from 500 to 900℃.Results from Zn L-edge and Zn K-edge X-ray absorption spectroscopy studies reveal that tetrahedral ZnN4 centers in ZIF-8 transform to porphyrin-like ZnN4 centers supported on N-doped carbon at temperatures as low as 600℃.As the pyrolysis temperature increased in the range 600-900℃,the Zn atoms moved closer to the N4 coordination plane.This subtle geometry change in the ZnN4 sites alters the electron density on the Zn atoms(formally Zn2+),strongly impacting the catalytic performance for the peroxidase-like decomposition of H2 O2.The catalyst obtained at 800℃(Zn-N-C-800) offered the best performance for H2 O2 decomposition.This work provides valuable new insights about the evolution of porphyrin-like single metal sites on N-doped carbons from ZIF precursors and the factors influencing SAC activity.展开更多
Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),ba...Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),based on unprecedented dimeric pyrogallol[4]arene-based Ln_8metal-organic nanocapsule(MONC)supramolecular building blocks and formate linkers,have been prepared under solvothermal conditions.To our best of knowledge,they present not only the first two examples of 3D hierarchical structures constructed from MONCs in metal-pyrogallol[4]arene system,but also the first two examples of MOFs based on lanthanide MONCs.Remarkably,the inner cavity volume of the Ln_8capsule in FJI-Y4 and FJI-Y5 is approximately151?~3,which is larger than those found in previous transition metal-seamed dimeric Pg C_n-based MONCs.Magnetic investigation on FJI-Y4 suggests a significant magnetocaloric effect(23.97 J kg^(-1)K^(-1),ΔH=7 T,2.5 K),while FJI-Y5 exhibits slow relaxation of the magnetization.展开更多
Three metal-organic frameworks,{[Mg_2(MFDA)_2(DMF)_3]·0.5H_2O}_n(1),{[Ca(MFDA)(DMF)(H_2O)]·0.5DMF}_n(2)and[Ca(MFDA)(DMF)_2]_n(3)(DMF=N,N-dimethylformamide)have been synthesized by the solvothermal reactions ...Three metal-organic frameworks,{[Mg_2(MFDA)_2(DMF)_3]·0.5H_2O}_n(1),{[Ca(MFDA)(DMF)(H_2O)]·0.5DMF}_n(2)and[Ca(MFDA)(DMF)_2]_n(3)(DMF=N,N-dimethylformamide)have been synthesized by the solvothermal reactions between the ligand 9,9-dimethylfluorene-2,7-dicarboxylic acid(H_2MFDA)and the corresponding metal salts,respectively.The single crystal X-ray structural analyses reveal that compounds 1-3 display three-dimensional structures based on the M(Ⅱ)-O-C chains.It is interesting that the MFDA ligands in 1-3 have different dihedral angles between the two carboxylate groups ranging from 9.9(1)°to 41.8(2)°.All of compounds exhibit strong ligand-centered blue emissions under UV lights.Their thermal properties have also been studied.展开更多
Advanced electromagnetic(EM)wave absorbing materials with strong absorption and broad bandwidth are important for military stealth and elimination of microwave pollution in consumers’electronics.Metal organic framewo...Advanced electromagnetic(EM)wave absorbing materials with strong absorption and broad bandwidth are important for military stealth and elimination of microwave pollution in consumers’electronics.Metal organic framework(MOF)-derived metal/carbon hybrids with ordered structure are significantly urgent in this field.In this contribution,we presented a design strategy of hollow cage-like or solid box-like magnetic/dielectric Fe/Co/C and dielectric Fe/Mn/C EM wave absorbing nanomaterials via pyrolyzing Prussian blue’s analogs with controllable topology and phase composition.The solid box-like Fe/Co/C and hollow cage-like Fe/Mn/C showed favorable absorption property with a broad effective absorption bandwidth(EAB)and a low reflection loss(RL).Especially,the EAB of 8.8 GHz at a thickness of 2.5 mm for solid box-like Fe/Co/C nanocomplex prepared at 900℃is a new record for this type of materials.The design and tuning strategy for EM wave absorbers derived from topology-controllable MOF is important for EM functional materials possessing great potential in military stealth and consumers’electronics.展开更多
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
基金Project (51275179) supported by the National Natural Science Foundation of ChinaProject (2010A090200072) supported by Industry,University and Research Institute Combination of Ministry of Education, Ministry of Science and Technology and Guangdong Province,China+1 种基金Project (2012M511797) supported by China Postdoctoral Science FoundationProject (2012ZB0014) supported by FundamentalResearch Funds for the Central Universities of China
文摘The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.
文摘Uniformly distributed single layer of ZIF67-derived C3N4(ZIF67-C3N4)was synthesized and applied to the photocatalytic degradation of methylene blue(MB)under visible light.Results indicated that the obtained ZIF67-C3N4 has a maximum specific surface area of 541.392 m^2/g,which is much larger than that of raw C3N4 of 97.291 m^2/g.The investigation of C3N4 amount involved in ZIF67-C3N4 on the photoactivity revealed that 2.57 g ZIF67 with 0.3 g C3N4,which named ZIF67-C3N4(0.3)exhibited superior photocatalytic activities.More than 90%of MB at 10 mg/L was degraded within 70 min with the addition of 0.01 g ZIF67-C3N4(0.3),while this time required for raw C3N4 was over 140 min.The effects of pH of solution,initial concentration of MB and dosage of C3N4 in ZIF67-C3N4 composites on the photocatalytic efficiency for MB degradation were also evaluated.Quenching experiments indicated that the photo-induced holes(h^+)and superoxide radicals(O2-·)were mainly responsible for MB degradation.It is anticipated that the insertion of ZIF67 nanoparticles not only increases the adsorption capacity of C3N4 but also promotes the generation and migration of the photo-induced active species.
基金Supported by National Natural Science Foundation of China(No.21136007,No.51302184)the National Research Fund for Fundamental Key Projects(No.2014CB260402)
文摘Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.
基金Project(51674114)supported by the National Natural Science Foundation of ChinaProject(2019JJ40069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(16K025)supported by the Key Laboratory of the Education Department of Hunan Province,China
文摘A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.
文摘Societa Nazionale Officine di Savigliano was a company specialized in railway constructions, metallic bridges and mechanical and electrical constructions. Between the end of the 19th century and the beginning of the 20th century, the company became well known in Europe especially for metallic constructions, having built the majority of metal bridges in the north of Italy such as the famous Paderno bridge (1887-1889), one of the biggest arch bridge for the period. In the 1930s, the company built some interesting examples of steel frame buildings, applying the electrical welding technique, acquired in industrial constructions, to civil buildings. The steel frame was quite rare in Italian buildings, especially in the matter of civil constructions and Savigliano made an effort in modernizing the Italian construction system, through research and innovation. The paper will discuss some examples of Savigliano's works dating back to 1930, and in particular, it will present a specific example never studied before: the hangar at the Elmas military airport, in Cagliari (Sardinia). The building is worth mentioning for the innovations experimented, as the new welding technique allowed a series of improvements in the construction process.
文摘Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scale implementation of CO_(2)RR is severely hindered by the lack of high‐performance CO_(2)RR electrocatalysts.Heterogeneous molecular catalysts and metal‐organic framework with well‐defined structure and high tunability of the metal centers and ligands show great promise for CO_(2)RR in terms of both fundamental understanding and practical application.Here,structural and interfacial engineering of these well‐defined metal‐organic ensembles is summarized.This review starts from the fundamental electrochemistry of CO_(2)RR and its evaluation criteria,and then moves to the heterogeneous molecular catalysts and metal‐organic framework with emphasis on the engineering of metal centers and ligands,their interaction with supports,as well as in situ reconstruction of metal‐organic ensembles.Summary and outlook are present in the end,with the hope to inspire and provoke more genuine thinking on the design and fabrication of efficient CO_(2)RR electrocatalysts.
文摘This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.
基金the National Natural Science Foundation of China(21873018)Foundation of the Education Department of Jilin Province(111099108)Jilin Provincial Research Center of Advanced Energy Materials(Northeast Normal University)for financial support
文摘Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH_(3)OH·3H_(2)O(2),and[Mn^(Ⅱ)_(4)Ni^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·2CH_(3)OH·2H_(2)O(3),have been successfully synthesized by using 4-[tri-(hydroxymethyl)methyl]pyridine(4-thmpyH_(3))as ligand.Crystal structure analyses show that compound 1 is a disk-like twelve nuclear[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)]0D cluster.Compounds 2 and 3 are isomorphic,and the decanuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]node in compound 2 can be seen as a hyper-tetrahedron of four coboundary cubic alkanes[Mn^(Ⅱ)Co^(Ⅱ)_(3)O_(4)],then each ten-nuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]is connected by six 4-thmpy^(3-)with six adjacent decanuclear clusters[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)],forming the NaCl-type 3D topological structure.Magnetic studies showed that there exist antiferromagnetic interactions between metal ions in 1-3.
基金supported by the Ministry of Business, Innovation and Employment Catalyst Fund (MAUX 1609)the University of Auckland Faculty Research Development Fund+1 种基金the MacDiarmid Institute for Advanced Materials and Nanotechnologya generous philanthropic donation from Greg and Kathryn Trounson。
文摘The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding the structural evolution of M-N-C as a function of ZIF pyrolysis temperature is important for realizing high performance catalysts.Herein,we report a detailed investigation of the evolution of Zn single atom catalyst sites during the pyrolysis of ZIF-8 at temperatures ranging from 500 to 900℃.Results from Zn L-edge and Zn K-edge X-ray absorption spectroscopy studies reveal that tetrahedral ZnN4 centers in ZIF-8 transform to porphyrin-like ZnN4 centers supported on N-doped carbon at temperatures as low as 600℃.As the pyrolysis temperature increased in the range 600-900℃,the Zn atoms moved closer to the N4 coordination plane.This subtle geometry change in the ZnN4 sites alters the electron density on the Zn atoms(formally Zn2+),strongly impacting the catalytic performance for the peroxidase-like decomposition of H2 O2.The catalyst obtained at 800℃(Zn-N-C-800) offered the best performance for H2 O2 decomposition.This work provides valuable new insights about the evolution of porphyrin-like single metal sites on N-doped carbons from ZIF precursors and the factors influencing SAC activity.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the National Natural Science Foundation of China (21390392, 51603206)the Nature Science Foundation of Fujian Province (2016J05056)
文摘Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),based on unprecedented dimeric pyrogallol[4]arene-based Ln_8metal-organic nanocapsule(MONC)supramolecular building blocks and formate linkers,have been prepared under solvothermal conditions.To our best of knowledge,they present not only the first two examples of 3D hierarchical structures constructed from MONCs in metal-pyrogallol[4]arene system,but also the first two examples of MOFs based on lanthanide MONCs.Remarkably,the inner cavity volume of the Ln_8capsule in FJI-Y4 and FJI-Y5 is approximately151?~3,which is larger than those found in previous transition metal-seamed dimeric Pg C_n-based MONCs.Magnetic investigation on FJI-Y4 suggests a significant magnetocaloric effect(23.97 J kg^(-1)K^(-1),ΔH=7 T,2.5 K),while FJI-Y5 exhibits slow relaxation of the magnetization.
基金the National Natural Science Foundation of China(61136003,61575096,51173081)the Ministry of Education of China(IRT1148)+3 种基金the Natural Science Foundation of Jiangsu Province(BM2012010,BK20151512)Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)Specialized Research Fund for the Doctoral Program of Higher Education (20113223110005)the National Basic Research Program of China (2012CB933301)
文摘Three metal-organic frameworks,{[Mg_2(MFDA)_2(DMF)_3]·0.5H_2O}_n(1),{[Ca(MFDA)(DMF)(H_2O)]·0.5DMF}_n(2)and[Ca(MFDA)(DMF)_2]_n(3)(DMF=N,N-dimethylformamide)have been synthesized by the solvothermal reactions between the ligand 9,9-dimethylfluorene-2,7-dicarboxylic acid(H_2MFDA)and the corresponding metal salts,respectively.The single crystal X-ray structural analyses reveal that compounds 1-3 display three-dimensional structures based on the M(Ⅱ)-O-C chains.It is interesting that the MFDA ligands in 1-3 have different dihedral angles between the two carboxylate groups ranging from 9.9(1)°to 41.8(2)°.All of compounds exhibit strong ligand-centered blue emissions under UV lights.Their thermal properties have also been studied.
基金This work was financially supported by the National Natural Science Foundation of China(21875190)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars,the Natural Science Basic Research Plan in Shaanxi Province of Distinguished Young Scholar(2018JC-008)China Postdoctoral Science Foundation(2018M643724).
文摘Advanced electromagnetic(EM)wave absorbing materials with strong absorption and broad bandwidth are important for military stealth and elimination of microwave pollution in consumers’electronics.Metal organic framework(MOF)-derived metal/carbon hybrids with ordered structure are significantly urgent in this field.In this contribution,we presented a design strategy of hollow cage-like or solid box-like magnetic/dielectric Fe/Co/C and dielectric Fe/Mn/C EM wave absorbing nanomaterials via pyrolyzing Prussian blue’s analogs with controllable topology and phase composition.The solid box-like Fe/Co/C and hollow cage-like Fe/Mn/C showed favorable absorption property with a broad effective absorption bandwidth(EAB)and a low reflection loss(RL).Especially,the EAB of 8.8 GHz at a thickness of 2.5 mm for solid box-like Fe/Co/C nanocomplex prepared at 900℃is a new record for this type of materials.The design and tuning strategy for EM wave absorbers derived from topology-controllable MOF is important for EM functional materials possessing great potential in military stealth and consumers’electronics.